In this paper, we introduce DeLA-DrugSelf, an upgraded version of DeLA-Drug [J. Chem. Inf. Model. 62 (2022) 1411–1424], which incorporates essential advancements for automated multi-objective de novo design. Unlike its predecessor, which relies on SMILES notation for molecular representation, DeLA-DrugSelf employs a novel and robust molecular representation string named SELFIES (SELF-referencing Embedded String). The generation process in DeLA-DrugSelf not only involves substitutions to the initial string representing the starting query molecule but also incorporates insertions and deletions. This enhancement makes DeLA-DrugSelf significantly more adept at executing data-driven scaffold decoration and lead optimization strategies. Remarkably, DeLA-DrugSelf explicitly addresses the SELFIES-related collapse issue, considering only collapse-free compounds during generation. These compounds undergo a rigorous quality metrics evaluation, highlighting substantial advancements in terms of drug-likeness, uniqueness, and novelty compared to the molecules generated by the previous version of the algorithm. To evaluate the potential of DeLA-DrugSelf as a mutational operator within a genetic algorithm framework for multi-objective optimization, we employed a fitness function based on Pareto dominance. Our objectives focused on target-oriented properties aimed at optimizing known cannabinoid receptor 2 (CB2R) ligands. The results obtained indicate that DeLA-DrugSelf, available as a user-friendly web platform (https://www.ba.ic.cnr.it/softwareic/delaself/), can effectively contribute to the data-driven optimization of starting bioactive molecules based on user-defined parameters.
DeLA-DrugSelf: Empowering multi-objective de novo design through SELFIES molecular representation
Alberga D.;Graziano G.;Delre P.;Lomuscio M. C.;Corriero N.;Contino M.;Stefanachi A.;Mangiatordi G. F.
2024-01-01
Abstract
In this paper, we introduce DeLA-DrugSelf, an upgraded version of DeLA-Drug [J. Chem. Inf. Model. 62 (2022) 1411–1424], which incorporates essential advancements for automated multi-objective de novo design. Unlike its predecessor, which relies on SMILES notation for molecular representation, DeLA-DrugSelf employs a novel and robust molecular representation string named SELFIES (SELF-referencing Embedded String). The generation process in DeLA-DrugSelf not only involves substitutions to the initial string representing the starting query molecule but also incorporates insertions and deletions. This enhancement makes DeLA-DrugSelf significantly more adept at executing data-driven scaffold decoration and lead optimization strategies. Remarkably, DeLA-DrugSelf explicitly addresses the SELFIES-related collapse issue, considering only collapse-free compounds during generation. These compounds undergo a rigorous quality metrics evaluation, highlighting substantial advancements in terms of drug-likeness, uniqueness, and novelty compared to the molecules generated by the previous version of the algorithm. To evaluate the potential of DeLA-DrugSelf as a mutational operator within a genetic algorithm framework for multi-objective optimization, we employed a fitness function based on Pareto dominance. Our objectives focused on target-oriented properties aimed at optimizing known cannabinoid receptor 2 (CB2R) ligands. The results obtained indicate that DeLA-DrugSelf, available as a user-friendly web platform (https://www.ba.ic.cnr.it/softwareic/delaself/), can effectively contribute to the data-driven optimization of starting bioactive molecules based on user-defined parameters.File | Dimensione | Formato | |
---|---|---|---|
DelaDrugSelf 2024.pdf
accesso aperto
Descrizione: Research Article
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
4.28 MB
Formato
Adobe PDF
|
4.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.