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A B S T R A C T   

In this paper, we introduce DeLA-DrugSelf, an upgraded version of DeLA-Drug [J. Chem. Inf. Model. 62 (2022) 1411–1424], which incorporates essential ad
vancements for automated multi-objective de novo design. Unlike its predecessor, which relies on SMILES notation for molecular representation, DeLA-DrugSelf 
employs a novel and robust molecular representation string named SELFIES (SELF-referencing Embedded String). The generation process in DeLA-DrugSelf not only 
involves substitutions to the initial string representing the starting query molecule but also incorporates insertions and deletions. This enhancement makes DeLA- 
DrugSelf significantly more adept at executing data-driven scaffold decoration and lead optimization strategies. Remarkably, DeLA-DrugSelf explicitly addresses the 
SELFIES-related collapse issue, considering only collapse-free compounds during generation. These compounds undergo a rigorous quality metrics evaluation, 
highlighting substantial advancements in terms of drug-likeness, uniqueness, and novelty compared to the molecules generated by the previous version of the al
gorithm. To evaluate the potential of DeLA-DrugSelf as a mutational operator within a genetic algorithm framework for multi-objective optimization, we employed a 
fitness function based on Pareto dominance. Our objectives focused on target-oriented properties aimed at optimizing known cannabinoid receptor 2 (CB2R) ligands. 
The results obtained indicate that DeLA-DrugSelf, available as a user-friendly web platform (https://www.ba.ic.cnr.it/softwareic/delaself/), can effectively contribute 
to the data-driven optimization of starting bioactive molecules based on user-defined parameters.   

1. Introduction 

1.1. Background 

The drug discovery (DD) process can be likened to searching for a 
needle in a haystack, given that the chemical space is estimated to 
encompass at least 1023 drug-like compounds [1]. When the objective is 
to identify a small molecule active against a protein target, a conven
tional approach involves searching a well-established active molecule 
and endeavoring to enhance its pharmacodynamics and pharmacoki
netics properties [2,3]. This is achieved by introducing subtle modifi
cations guided by human intuition [4]. In recent decades, the 
traditionally costly and time-intensive DD process has accelerated 
thanks to the emergence of virtual screening and computer-aided drug 
discovery techniques [5–9]. These advancements allow for in-silico 
testing of molecular libraries with sizes reaching billions [10,11]. In 
the ongoing era of Artificial Intelligence (AI), the advent of deep 

learning [12,13] and, more specifically, generative algorithms has 
paved the way for complete automation in navigating the vast landscape 
of chemical space. This capability empowers the identification of novel 
drug-like compounds in a data-driven manner [14–16]. Specifically, 
these algorithms undergo a two-step process. Initially, they are trained 
to acquire a chemical representation from a designated training set. 
Subsequently, they leverage the acquired syntactical rules to generate 
novel compounds [17–19]. This dual-step approach allows them to not 
only learn from existing data but also creatively produce new chemical 
entities based on the learned patterns and structures. Numerous gener
ative models have been developed based on diverse deep learning ar
chitectures including Recurrent Neural Networks (RNNs) [20–23], 
variational autoencoders (VAEs) [24–28], Generative Adversarial Net
works (GANs) [29–33], Reinforcement Learning (RL) [25,34–37], and 
transformers [38–42]. These models, having a wide range of applica
tions in chemioinformatics tasks such as prediction of protein-protein 
interactions [13] or protein function annotations [12], are commonly 
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employed for chemical design tasks and typically utilize either molec
ular graphs [43] or SMILES [44] as the chemical representation. A sig
nificant challenge faced by these models is the generation of valid 
SMILES strings [45]. Specifically, the generated strings must correspond 
to chemically valid molecular structures. Additionally, they should be 
easy to synthesize and possess favorable drug-like properties including 
appropriate molecular weight, lipophilicity, and the absence of poten
tially toxic chemical groups. However, achieving chemically valid 
SMILES strings is far from straightforward, as evidenced by the fact that 
these models are predominantly evaluated based on their ability to 
produce valid molecules [46]. 

1.2. The advent of SELFIES molecular representation 

A new molecular string representation named Self-referencing 
Embedded Strings (SELFIES) was recently proposed [47,48]. The main 
advantage of using SELFIES strings consists of their intrinsic ability to 
represent a chemically valid molecule whatever token combination is 
considered [47]. In other words, a validity of 100 % can be easily 
reached when algorithms based on such a new molecular representation 
are employed for generation, as testified by several recent papers 
[49–52]. Additionally, the SELFIES encoding algorithm employs a set of 
grammar rules designed to be simpler than SMILES, aiming to generate 
human-readable sequences [47]. Consequently, a generative model 
using SELFIES can learn its syntax more easily than SMILES, making the 
training phase faster. However, despite using SELFIES in the context of 
de novo design is undoubtedly promising, this new molecular repre
sentation is not exempt from limitations. While all the generated com
pounds may be deemed valid, a non-negligible fraction struggles with 
the so-called “collapse” issue. Specifically, the SELFIES decoding algo
rithm, in its attempt to self-correct a grammatically incorrect combi
nation of tokens, automatically truncates the string, collapsing it into a 
valid SELFIES [51–53]. This phenomenon introduces a potential bias 
and yields false positive feedback during model training, thereby casting 
doubt on the reliability of the resulting generative models. As far as our 
knowledge extends, a comprehensive resolution to this issue has been 
presented in only a handful of papers that introduce novel generative 
algorithms based on molecular SELFIES [51,52]. In many instances, 
SELFIES collapse has been overlooked or not addressed at all. 

1.3. DeLA-DrugSelf 

In a recent work by our group, we introduced a SMILES generative 
algorithm, called DeLA-Drug [22], which is based on Recurrent Neural 
Networks (RNNs). This algorithm can generate drug-like analogues by 
altering a query sequence through character substitutions. Subse
quently, we harnessed DeLA-Drug as a mutational operator within a 
genetic algorithm-based framework named GENERA [54]. The purpose 
was to guide the generation of an analogue library possessing desired 
properties, such as the predicted affinity against a protein target. 
Building on this background, herein we present a novel RNN-based de 
novo design algorithm, named DeLA-DrugSelf, which can generate novel 
molecules learning the SELFIES representation. Exploiting the SELFIES 
encoding robustness, the proposed approach is able to generate a library 
of analogues of a starting query by manipulating its SELFIES represen
tation. Remarkably, DeLA-DrugSelf generates new compounds by intro
ducing character substitutions (as DeLA-Drug) and making insertions or 
deletions at random positions, making it more suitable for performing 
lead-optimization and scaffold-decoration tasks. Notably, DeLA-DrugSelf 
explicitly addresses the collapse issue as only collapse-free compounds 
are considered upon generation. Finally, the ability of DeLA-DrugSelf to 
generate new compounds able to bind to the cannabinoid receptor 2 
(CB2R), a promising target involved in cancer and neurodegeneration 
[55–58], was challenged by using it as a mutational operator within a 
genetic algorithm framework. 

2. Materials and methods 

2.1. Datasets preparation 

The training set (TS) of DeLA-DrugSelf was prepared starting from the 
entire ChEMBL28 database [59] and applying the following data cura
tion steps using KNIME v4.1.4 [60] as data-handling software and 
employing the CDK [61], RDKit [62], and Open Babel [63] extension 
nodes for the required chemoinformatics tasks: (i) discard records 
lacking SMILES notation (ii); remove stereoisomerism; (iii) de-salt and 
neutralize all of the entries; (iv) remove inorganic and metal atom 
compounds; (v) remove compounds with elements different from H, C, 
N, O, F, Br, I, Cl, P, and S; (vi) convert all of the entries into Open Babel 
neutralized canonical SMILES; (vii) remove duplicates [64]; and (viii) 
discard SMILES with too low (bottom 5 %) or too high (top 5 %) number 
of characters. The final TS consists of 1,092,285 compounds whose 
SMILES were converted into SELFIES notation using an in-house Python 
script. All the SELFIES characters were tokenized into a single character 
symbol (e.g. ‘[C]’ were mapped as ‘A’, and [O] as ‘E’). Finally, two 
additional characters were added at the beginning (”$“) and at the end 
(”~“) of each string, respectively. Furthermore, each entry was 
expanded adding “€” padding characters to standardize the length of the 
strings (matching the longest ones in the TS). The final alphabet consists 
of 79 characters and each padded entry is 82 characters long. Each 
character was represented as a one-hot vector composed of 79 compo
nents. Using this representation, each SELFIES was encoded as a binary 
matrix of dimension 82 × 79. In addition, a dataset including high af
finity CB2R ligands (CB2R-DB), was built extracting affinity entries from 
ChEMBL25 [59] labelled with the CB2R Target ID (ChEMBL253). The 
CB2R-DB was filtered retaining entries annotated exclusively with IC50 
and Ki measures with values < 1 μM, referring to assays conducted on 
human targets (“target_organism” = “Homo sapiens”) and marked as 
direct binding (“assay_type” = “B”) and without warnings in the 
“data_validity_comment” field. The final CB2R-DB contains 1845 com
pounds after de-salting, neutralizing, and removing all the duplicates. 

2.2. Generative model architecture 

The model was built resembling the architecture of DeLA-Drug, fully 
detailed in our previous work [22]. The model consists of an RNN [65] 
composed of two layers of Long Short-Term Memory (LSTM) units [66] 
and is trained to predict the probability distribution of the next character 
given the C previous characters as a context. The training was performed 
on a node of the pre-exascale Tier-0 EuroHPC supercomputer LEO
NARDO (supercomputer center CINECA, Italy), in four epochs using the 
TS with a minibatch size of 256 and using the Adam optimizer [67] 
(learning rate is 10− 3, β1 = 0.9 and β2 = 0.999) with back-propagation 
through time [68]. 

2.3. Sampling with mutations approach 

We exploited the LSTM architecture in two generative approaches. 
The first one, named sampling from scratch (SFS), is the same as 
described in our previous work [22] and here briefly summarized. 
Starting from the beginning of the token sequence, we iteratively predict 
the next character of the sequence by sampling the probability distri
bution returned in output by the RNN when a context consisting of the 
previous C characters is given as input. This procedure is iterated till the 
end of the sequence character (hereinafter referred to as EoS) is sampled. 
On the other hand, the second strategy, named sampling with mutations 
(SWM) consists of the following steps. Starting from a query SELFIES 
string, a number M of tokens in random positions (Ps) is selected from 
the query. The query string is then scanned token by token starting from 
the first, when the scanned token is not included in the selected Ps, it is 
copied to the output string, otherwise it is modified by applying one of 
the following operations, randomly selected: (i) the token is substituted 
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with the one predicted by the RNN when the previous output C tokens 
are given as input (substitution operation); (ii) the token is copied to the 
output and a new token is added to the output predicting as in (i) 
(addition operation); (iii) the token is deleted (deletion). The procedure 
stops when the EoS token is sampled, either because it was copied from 
the original string or generated by addition and substitution operations. 
Fig. 1 shows the main steps of the adopted workflow. 

2.4. Combining DeLA-DrugSelf with a genetic algorithm for multi- 
objective optimization 

DeLA-DrugSelf was inserted into a genetic algorithm framework to 
test it as a suitable mutational operator for a multi-objective de-novo 
design pipeline. To achieve this, the following steps were taken into 
consideration. Given an initial pool of molecules, all the desired scoring 
functions were calculated for each entry and the Pareto front was 
derived accordingly [54]. A fixed number of mutations M was randomly 
chosen within a fixed range and each molecule belonging to the Pareto 
front modified through the SWM approach. The newly generated mol
ecules were added to the initial pool. The new Pareto front was 
computed and employed for the further generation, performed using a 
new value of M. The stopping criterion of the algorithm can be 
customized case by case. As an example, the generation can terminate 
when a specified number of molecules with the desired properties are 
generated. To test our algorithm as a valuable tool for lead-optimization, 
we started the generation from a single lead molecule (instead of a pool 
of compounds). If the algorithm generates a molecule with a collapsed 
SELFIES, a new generation is performed using a new set of random Ps for 
a maximum of 1000 attempts. 

2.5. Docking simulations 

All the generated compounds were docked on the recently published 
crystal structure of CB2R (PDB code: 6KPC) [69] using a protocol vali
dated in a previous work [56] and herein briefly mentioned. Docking 
simulations were performed using Grid based ligand docking with en
ergetics (GLIDE) [70] as software, available in the Schrödinger suite 
2023-4 [71], and, more specifically, the standard precision (SP) proto
col. Notice that during the docking process, the protein was held fixed 
while full flexibility was allowed for the ligands. The interested reader is 
referred to Intranuovo et al. [56] for methodological details. 

2.6. Generation of Protein− Ligand interaction fingerprints 

Interaction fingerprints (IFs) were generated using the SIFt tool, 
available in the Schrödinger Suite 2023-4 [71,72]. It is important to note 
that IFs are binary one-dimensional (1D) representations that encode the 
presence or absence of specific interactions occurring between a given 
compound and the binding site (BS) in the top-scored docking pose. 
Specifically, nine types of potential interactions were considered for 
each residue: (i) any contact, (ii) backbone interactions, (iii) side-chain 
interactions, (iv) contact with polar residues, (v) contact with hydro
phobic residues, (vi) formation of hydrogen bonds with H-bond accep
tors of the BS, (vii) formation of hydrogen bonds with H-bond donors of 
the BS, (viii) contact with aromatic residues, and (ix) contact with 
charged residues. This approach represented each residue within the BS 
as a nine-bit long string, where ‘1′ indicates the presence of the corre
sponding ligand-residue interaction, and ‘0′ indicates its absence. 

3. Results and discussion 

The main goal of our RNN algorithm is to learn the grammar of the 
SELFIES, approximating it to a natural language. The learned grammar 
can be used to estimate the probability distribution for the ith character 
given its context (i.e., the previous C characters). When working with 
SMILES, the validity of the generated string is a crucial aspect to opti
mize, thus the algorithms are usually designed to maximize the per
centage of valid SMILES string generated in a run [22]. On the contrary, 
the SELFIES decoding algorithm is based on the assumption that every 
combination of tokens is valid, hence it automatically ignores gram
matically invalid sequences [47]. More specifically, incorrect strings 
collapse into a truncated valid SELFIES string. Although this phenome
non, also known as SELFIES collapse problem, has been addressed only 
in a few works presenting new generative algorithms, it should be 
carefully considered as able to strongly alter the performance of the 
algorithm [51,52]. In the context of analogues generation, it should be 
noted that including collapsed SELFIES would lead to the generation of 
molecules that stray too much from the starting query. In other words, 
the uncollapsed rate (U), defined as the percentage of the generated 
molecules unaffected by the SELFIES collapse problem, is a quality 
metric worth considering. Furthermore, to gain more insights into the 
link between SELFIES collapse and the quality of the generated com
pounds, we also computed the Levenshtein (D) distance [73] as an 

Fig. 1. Flowchart showing the main steps followed by the algorithm of DeLA-DrugSelf. Notice that unlike its predecessor DeLA-Drug, which utilized SMILES for 
molecular representation, it employs SELFIES. Notice that the generation process involves not only substitutions to the initial string representing the starting query 
molecule but also insertions and deletions and that DeLA-DrugSelf explicitly addresses the SELFIES-related collapse issue, considering only collapse-free compounds 
during generation. 
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indicator of the degree of collapse of each generated compound. Notice 
that D is computed using the following procedure: i) The generated 
SELFIES string is converted into the corresponding SMILES string; ii) The 
resulting SMILES string is converted back into a SELFIES string; iii) The 
starting and final SELFIES strings are compared, and D is computed as 
the counts of SELFIES character edits (insertions, deletions, and sub
stitutions) required to transform one string into the other one. 
Furthermore, to evaluate the quality of the molecules generated by 
means of both the SFS and SWM approaches, a set of quality metrics 
typically employed in the context of de novo design [74,75] were 
computed: (i) unicity (Uni) defined as the percentage of unique gener
ated molecules; (ii) internal diversity (ID) [76] defined as the mean of 
the Tanimoto distances (measured using a Morgan fingerprint [77] with 
radius 2) between each molecule and all the others belonging to the 
considered set; (iii) novelty (Nov) defined as the percentage of the 
generated molecules not present in the TS; (iv) the quantitative estimate 
of drug-likeness (QED) score [78], an estimation of the compound to 
resemble a drug based on computed physicochemical properties; (v) the 
synthetic accessibility (SA) score [79], that quantify the difficulty of the 
chemical synthesis of the compound, ranging from 1 (easy) to 10 (hard); 
(vi) the percentage of generated compounds without structural alerts 
known to be responsible for false positives in in vitro assays (PAINS) 
[80]. Regarding the SWM approach, we also measured the query simi
larity (QS), defined as the mean Tanimoto similarity (using a Morgan 
fingerprint [77] with radius 2) computed between each generated 
molecule and the corresponding query. 

3.1. SFS approach evaluation 

To evaluate the quality of the compounds proposed by the SFS 
approach, we generated a set of 100,000 SELFIES strings using different 
values of C (i.e.; C = 1, 2, 4, 6, 8, 10, 12 and 14). The above-mentioned 
quality metrics were computed for each set (Table 1) considering: all the 

generated SELFIES strings (D ≥ 0), the uncollapsed ones only (D = 0) 
and the collapsed ones only (D > 0). Satisfactorily, the uncollapsed rate 
U reached values > 75 % with a maximum value exceeding 80 % when a 
very high value of context is considered (C = 12). Exceptions are rep
resented by the pool generated using as C very low values (C = 1 and C 
= 2, both returning U values < 70 %). Importantly, these data suggest 
that increasing the context, a parameter recently introduced by our 
group [22], might be a winning strategy to minimize the collapsing of 
the SELFIES string. Remarkably, for all the considered sets, high Uni 
(>99 %), Nov (>99 %) and ID values (>0.83) were obtained demon
strating the ability of the SFS approach to generate compounds spanning 
a large area of the chemical space. It is worth noting that significantly 
lower values (always <89 %) of Uni are returned when the SFS approach 
is applied on the same RNN architecture but using SMILES strings 
instead of SELFIES ones [22]. Furthermore, the obtained data indicate 
that both QED and SA are affected by C, as a significant improvement is 
observed in going from C = 1 (QED = 0.51 ± 0.22, SA = 3.29 ± 0.96) 
and C = 2 (QED = 0.51 ± 0.22, SA = 3.21 ± 0.94) to C ≥ 4 where QED 
ranges from 0.58 ± 0.21 to 0.60 ± 0.20 (except for C = 14) and SA from 
2.95 ± 0.83 to 3.11 ± 0.93. Remarkably, this improvement seems to be 
the consequence of a reduced collapse rate (i.e.; higher U values). This is 
evident looking at the values of the quality metrics returned by the 
subsets including only uncollapsed (D = 0) and collapsed (D > 0) 
SELFIES strings. As an example, when a C value equal to 12 is employed, 
the returned averaged QED score improves from 0.50 ± 0.21 (D > 0) to 
0.60 ± 0.20 (D > 0), hence exceeding the values obtained when SMILES 
strings are used [22]. Such a trend is confirmed even when the SA score 
is considered (improving from 3.52 ± 0.90 to 2.81 ± 0.75). To delve 
deeper into this point, we plotted the dependence of both the averaged 
QED and SA with respect to the degree of collapse (C = 12). In other 
words, these metrics were computed for subsets returning specific D 
values. As evident from Fig. 2A, the higher the degree of collapse, the 
lower the quality of the generated compounds. This behavior can be 

Table 1 
Quality Metrics of the set of SELFIES generated with the Sampling from Scratch (SFS) approach at different values of context (C). Unicity (Uni), internal diversity (ID), 
novelty (Nov), the quantitative estimate of drug-likeness (QED) score, the synthetic accessibility (SA) score and the percentage of generated compounds without 
structural alerts known to be responsible for false positives in vitro assays (PAINS) are reported. For each set the metrics are computed considering all the molecules, 
only the uncollapsed SELFIES with Levenshtein distance D = 0 and only the collapsed SELFIES (D > 0).   

C = 1 C = 2 C = 4 

D ≥ 0 D = 0 D > 0 D ≥ 0 D = 0 D > 0 D ≥ 0 D = 0 D > 0 

U (%) 66.58 – – 68.83 – – 79.01 – – 
Uni (%) 99.93 99.92 99.96 99.97 99.97 99.96 99.89 99.87 99.95 
ID (Td) 0.85 0.85 0.86 0.84 0.84 0.85 0.83 0.83 0.86 
Nov (%) 99.97 99.96 99.98 99.97 99.97 99.98 99.95 99.94 99.98 
QED 0.51 ± 0.22 0.54 ± 0.21 0.44 ± 0.21 0.51 ± 0.22 0.54 ± 0.21 0.43 ± 0.21 0.58 ± 0.21 0.60 ± 0.20 0.49 ± 0.21 
SA 3.29 ± 0.96 3.05 ± 0.83 3.78 ± 1.01 3.21 ± 0.94 2.95 ± 0.79 3.78 ± 1.00 3.00 ± 0.85 2.85 ± 0.75 3.58 ± 0.94 
PAINS (%) 95.30 95.28 95.33 95.21 95.34 94.92 95.23 95.26 95.19  

C¼6 C¼8 C¼10 

D≥0 D¼0 D>0 D≥0 D¼0 D>0 D≥0 D¼0 D>0 

U (%) 78.04 – – 76.87 – – 79.19 – – 
Uni (%) 99.81 99.76 99.97 99.89 99.87 99.96 99.81 99.76 99.94 
ID (Td) 0.84 0.84 0.86 0.85 0.84 0.87 0.85 0.86 0.87 
Nov (%) 99.94 99.93 99.99 99.96 99.95 99.98 99.94 99.93 99.97 
QED 0.57 ± 0.21 0.60 ± 0.20 0.49 ± 0.21 0.60 ± 0.21 0.62 ± 0.20 0.51 ± 0.21 0.60 ± 0.20 0.62 ± 0.19 0.50 ± 0.21 
SA 3.01 ± 0.89 2.83 ± 0.77 3.63 ± 0.99 3.11 ± 0.93 2.92 ± 0.82 3.72 ± 1.00 3.00 ± 0.88 2.84 ± 0.78 3.65 ± 0.93 
PAINS (%) 94.77 94.71 95.03 95.48 95.49 95.47 95.22 95.29 94.95  

C¼12 C¼14 RANDOM 

D≥0 D¼0 D>0 D≥0 D¼0 D>0 D≥0 D¼0 D>0 

U (%) 80.22 – – 76.05 – – 2.5 – – 
Uni (%) 99.83 99.80 99.95 99.90 99.88 99.95 60.34 43.08 61.33 
ID (Td) 0.84 0.84 0.86 0.84 0.84 0.86 0.98 0.98 0.98 
Nov (%) 99.95 99.95 99.98 99.95 99.95 99.98 100.00 100.00 100.00 
QED 0.58 ± 0.20 0.60 ± 0.20 0.50 ± 0.21 0.52 ± 0.21 0.55 ± 0.20 0.43 ± 0.21 0.25 ± 0.11 0.31 ± 0.80 0.31 ± 0.80 
SA 2.95 ± 0.83 2.81 ± 0.75 3.52 ± 0.90 3.04 ± 0.87 2.84 ± 0.73 3.67 ± 0.97 7.04 ± 0.90 6.75 ± 1.17 6.75 ± 1.17 
PAINS (%) 95.28 95.30 95.22 94.68 94.74 94.49 90.77 96.11 96.11  
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explained considering that the RNN learns to reproduce the probability 
distribution of the SELFIES token in the TS. When truncation occurs in 
the case of collapsed SELFIES, the resulting strings might correspond to 
molecules that are far from those of the TS in terms of drug-likeness and 
synthetic accessibility. These results further support the statement that 
the collapse phenomenon in generative algorithms using SELFIES strings 
should be properly considered by the scientific community, being able to 
significantly compromise the quality of the designed compounds. In 
other words, efforts to reduce the occurrence of this phenomenon are 
highly desirable, similarly to what has been done in the last years to 
maximize the validity rate of the molecules generated using SMILES 
strings for molecular representation. We compared the performance of 
our generative algorithm with that returned by a SELFIES generator 
producing strings by randomly concatenating the tokens. Significantly 
worse performances were obtained with random concatenation, as 
evident looking at the low U (2.5 %), averaged QED (0.25 ± 0.11) and 
averaged SA (7.04 ± 0.90) values, hence further confirming that 
DeLA-DrugSelf properly learned the SELFIES syntax during the training 
phase. Furthermore, the algorithm’s reliability is strengthened by its 
ability to generate molecules that replicate the properties of the training 

set [75]. Indeed, the average SA and QED values of the molecules used 
for training are 3.02 ± 0.90 and 0.54 ± 0.20, respectively. As shown in 
Table 1, the employed SFS approach successfully reproduces these 
metrics while also ensuring a slight improvement compared to the 
training. Additionally, it is noteworthy that, based on the data reported 
in Table 1, Dela-DrugSelf is capable of generating compounds with 
slightly better QED and SA values compared to the majority of genera
tors available in the literature, as evidenced by the results reported by 
Wang et al. in a recent benchmark study [81]. 

3.2. SWM approach evaluation 

The SWM approach is crafted to generate analogues based on a given 
query. We tested our algorithm by generating a set of molecules for each 
number of mutations (M) ranging from 1 to 5. This involved creating 
molecules from 1000 randomly selected queries from CB2R-DB, gener
ating 100 molecules for each query. We employed the RNN model 
trained with C = 12, as it exhibited the highest value of U in the SFS 
approach (Table 1). For each set of generated molecules, we computed 
the predefined quality metrics, and the results are presented in Table 2. 

Fig. 2. Average of Quantitative Estimate of Drug-likeness (QED) and Synthetic Accessibility (SA) scores calculated for different values of SELFIES degree of collapse 
(D) for the set generated using: i) the SFS approach and a C value equal to 12 (A); ii) the SWM approach and with mutations number equal to 1 (B). 

Table 2 
Quality Metrics of the set of SELFIES generated with the Sampling with Mutations algorithm (SWM) at different values of mutations number (M). Unicity (Uni), internal 
diversity (ID), novelty (Nov), the quantitative estimate of drug-likeness (QED) score, the synthetic accessibility (SA) score and the percentage of generated compounds 
without structural alerts known to be responsible for false positives in vitro assays (PAINS) and the average Query Similarity (QS) are reported. For each set, the metrics 
are computed considering all the molecules, only the uncollapsed SELFIES with Levenshtain distance D = 0 and only the collapsed SELFIES (D > 0).   

M = 1 M = 2 M = 3 

D ≥ 0 D = 0 D > 0 D ≥ 0 D = 0 D > 0 D ≥ 0 D = 0 D > 0 

U (%) 26.95 – – 15.27 – – 8.90 – – 
Uni (%) 62.68 65.06 62.78 89.84 90.41 90.17 95.02 97.28 94.90 
ID (Td) 0.87 0.84 0.88 0.88 0.85 0.88 0.88 0.86 0.88 
Nov (%) 99.95 99.85 99.99 99.96 99.80 99.98 99.98 99.83 99.99 
QED 0.50 ± 0.20 0.53 ± 0.19 0.49 ± 0.20 0.49 ± 0.20 0.52 ± 0.19 0.48 ± 0.20 0.48 ± 0.20 0.51 ± 0.20 0.47 ± 0.20 
SA 3.76 ± 0.86 3.38 ± 0.79 3.90 ± 0.84 4.03 ± 0.89 3.55 ± 0.84 4.11 ± 0.88 4.23 ± 0.90 3.70 ± 0.88 4.28 ± 0.89 
PAINS (%) 97.50 96.21 97.99 97.73 96.41 97.96 97.87 96.34 98.02 
QS 0.49 ± 0.21 0.70 ± 0.17 0.41 ± 0.17 0.39 ± 0.19 0.63 ± 0.18 0.35 ± 0.16 0.32 ± 0.16 0.56 ± 0.18 0.30 ± 0.14   

M = 4 M = 5 

D ≥ 0 D = 0 D > 0 D ≥ 0 D = 0 D > 0 

U (%) 5.52 – – 3.46 – – 
Uni (%) 96.00 99.06 95.85 96.17 99.48 96.06 
ID (Td) 0.89 0.86 0.89 0.89 0.87 0.89 
Nov (%) 99.99 99.83 100.00 99.99 99.85 100.00 
QED 0.47 ± 0.20 0.50 ± 0.20 0.46 ± 0.20 0.46 ± 0.92 0.49 ± 0.21 0.45 ± 0.20 
SA 4.39 ± 0.91 3.85 ± 0.92 4.43 ± 0.90 4.51 ± 0.92 4.00 ± 0.95 4.53 ± 0.91 
PAINS (%) 97.79 96.42 97.87 97.85 95.99 97.10 
QS 0.27 ± 0.14 0.49 ± 0.18 0.26 ± 0.13 0.24 ± 0.12 0.44 ± 0.17 0.23 ± 0.12  
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Like earlier evaluations, all metrics were calculated for: i) all molecules; 
ii) only the uncollapsed ones (D = 0); iii) only the collapsed ones (D > 0). 
Notably, the metric U decreases with an increase in the number of 
mutations (M), dropping from 26.95 % for M = 1 to 3.46 % for M = 5. 
This is an anticipated outcome, as elevating the number of perturbations 
to the original SELFIES sequences heightens the risk of grammatically 
incorrect token combinations. As our tool was designed for data-driven 
lead optimization, we also computed the Query Similarity (QS) for each 
set of generated compounds. QS is defined as the averaged similarity 
between the generated molecules and their respective query. Signifi
cantly, when transitioning from M = 1 to M = 5, QS decreases from 0.49 
± 0.21 to 0.24 ± 0.12 (Table 2). Notably, these values increase when 
considering only the uncollapsed SELFIES (D = 0), with QS ranging from 
0.44 ± 0.17 (M = 5) to 0.70 ± 0.17 (M = 1). The substantial differences 
observed can be attributed to the collapse phase, where generating a 
grammatically valid sequence of tokens may result in molecules un
controllably different from the original query. The need for control over 
the distance from the query is another fact advocating for the critical 
importance of minimizing collapse when designing generative algo
rithms for automated lead optimization procedures. As seen when the 
SFS approach is employed, clear correlations were observed between 
two quality metrics (QED and SA) and the degree of collapse (D) 
(Table 2), further supporting the idea that lower D values correspond to 
higher-quality generated compounds. This trend is visually represented 
in Fig. 2B, with data generated when M = 1. Importantly, the same trend 
is evident when considering subsets generated with M > 1 (Table 2). 
Notably, generations conducted using the SWM approach with two well- 
known drugs as queries (i.e., aspirin and paracetamol) further indicate 
that DeLA-DrugSelf outperforms DeLA-Drug in terms of both QED and SA 
scores (refer to Tables S1 and S2 in the supporting information for de
tails), as observed when inspecting the molecules generated using the 
SFS approach. Finally, it is worth noting that when employing the SWM 
approach, the drug-likeness of the generated compounds also depends 
on that of the initial molecule used as a query. In other words, using a 
molecule with a low QED score may result in analogues with less 
favorable QED values compared to those produced by starting from 
molecules with high drug-likeness. 

3.3. An example of DeLA-DrugSelf application 

We tested the ability of DeLA-DrugSelf to be used for the optimization 
of the recently published compound 1 depicted in Fig. 3 (compound 26 
in Ref. [56]) responsible for an interesting experimental affinity (IC50 =

11 nM) towards the cannabinoid receptor II (CB2R), a target of interest 
for cancer and neurodegeneration [55,56]. 

To offer a tangible illustration of how users can generate molecules 
based on different criteria according to their needs (e.g., preserving a 
structural of binding mode similarity to a reference molecule), we 
conducted three distinct generations, referred to as GEN1, GEN2, and 

GEN3, each configured with different parameters and constraints. For 
GEN1, the number of mutations (M) ranged from 1 to 5, and the pa
rameters used for Pareto front calculation were: i) the docking score 
(DS); ii) the Tanimoto similarity (sim) with respect to the starting 
molecule, calculated by computing Morgan circular fingerprints with a 
radius of 2; and iii) SA. Additionally, any compounds returning SA 
values exceeding one unit compared to the starting lead compound were 
discarded during the generation process. For GEN2, we utilized the same 
parameters as GEN1, with the only exception being M, which ranged 
from 1 to 3. Additionally, an additional filter was applied: all generated 
compounds were discarded if their sim values were less than 0.5. GEN3 
differed from GEN1 as it incorporated interaction fingerprints (IF) 
Tanimoto similarity (IFsim) in the Pareto front. IFsim was calculated by 
comparing the IF computed on the top-scored docking poses with those 
returned by the cognate ligand [82], as defined in the experimental 
section. Using IFsim, it was possible to reward molecules that exhibited a 
predicted binding mode like the one experimentally observed for the 
cognate ligand. It is noteworthy that considering this parameter during 
the selection of molecules has been observed to significantly increase the 
success rate in virtual screening procedures [82]. All generations were 
terminated when at least 1500 molecules were generated. In Figs. 4–6 
the following metrics are reported for the GEN1, GEN2, and GEN3 sets, 
respectively: (i) the number of total generated molecules owning DSs 
higher than the query molecule, labelled as HDS, plotted against the 
number of generation loops; (ii) the distributions of the optimized pa
rameters along with the respective values owned by the query lead 
compound represented as vertical red lines; (iii) the joint distributions of 
the DS with the other parameters. 

Fig. 4 clearly shows that GEN1 molecules have good DS and SA 
values. As reported in Table 3, the set has a good average SA (3.04 ±
0.77) and 34.08 % of the generated molecules have a DS better than that 
returned by the query (HDS molecules). The DS/SA joint distribution 
further emphasizes that these properties are simultaneously possessed 
by a substantial number of compounds. However, sim values are 
frequently below 0.5, and the majority of HDS molecules exhibit low 
molecular similarity compared to the query. This may not be problem
atic if a broad exploration of the chemical space around the lead com
pound is desired, as also testified by the high ID value (0.74). 
Alternatively, if the objective is to evaluate molecules with high sim 
values, additional constraints during the generation process are essen
tial. The parameters chosen for GEN2 are specifically tailored to address 
this goal, as evident from Fig. 5. By reducing the maximum number of 
mutations to 3 and implementing a similarity cutoff of 0.5, GEN2 
compels the generation of molecules exhibiting both high similarity to 
the query and high docking scores, reflected in the HDS percentage 
value of 54.32 %. Consequently, a low ID value is observed (0.54), 
indicating that chemical space exploration is confined around the lead 
molecule. As anticipated, due to the high similarity to the query, the 
average SA (3.54 ± 0.48) of GEN2 compounds closely approximates the 
value of the query (3.31). The GEN3 set shares similarities with GEN1 in 
terms of optimized parameters, with the addition of the IFsim Tanimoto 
similarity as the fourth parameter in the Pareto front. In this case, the 
heightened complexity of the Pareto front introduces a trade-off in the 
optimization of individual parameters, as the genetic algorithm seeks to 
find a balance among a larger number of factors. This may elucidate the 
reduction of the HDS percentage value (22.27 %). Nevertheless, a 
favorable ID (0.71) and average SA are observed (3.12 ± 0.75). To 
further evaluate the potential of the generated molecules as CB2R li
gands, we subjected the HDS molecules to ALPACA [58], a machine 
learning-based platform for predicting CB2R affinity. ALPACA, exploit
ing a consolidated machine learning protocol [83], has demonstrated 
high accuracy in assessing the potential CB2R affinity of query mole
cules (AUC >0.90). Table 3 presents the percentage of HDS compounds 
predicted by ALPACA as high-affinity CB2R binders (CB2Rsel). GEN1 
demonstrates a noteworthy CB2Rsel value of 35.92 %. Importantly, in 
GEN2, by emphasizing similarity to the lead compound, there is a 

Fig. 3. Chemical structure of compound 1, a recently published CB2R ligand 
[56] used as starting query to test the ability of DeLA-DrugSelf to be used for 
lead optimization. 
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Fig. 4. Number of total generated molecules owning DSs higher than the lead molecule (HDS) plotted against the number of generation loops for the GEN1 set (A). 
Docking scores (reported as absolute values - DSs) (B), synthetic accessibility (SA) score (C) and the Tanimoto similarity (sim) with respect to the starting molecule, 
calculated by computing Morgan circular fingerprints with a radius of 2 (D) distributions returned by all the compounds belonging to the GEN1 set along with the 
respective values owned by the lead compound represented as vertical red lines. Joint distributions of DS-SA (E) and DS-sim (F) are also provided. 

Fig. 5. Number of total generated molecules owning DSs higher than the lead molecule (HDS) plotted against the number of generation loops for the GEN2 set (A). 
Docking scores (reported as absolute values - DSs) (B), synthetic accessibility (SA) score (C) and the Tanimoto similarity (sim) with respect to the starting molecule, 
calculated by computing Morgan circular fingerprints with a radius of 2 (D) distributions returned by all the compounds belonging to the GEN2 set along with the 
respective values owned by the lead compound represented as vertical red lines. Joint distributions of DS-SA (E) and DS-sim (F) are also provided. 
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corresponding high percentage of HDS molecules predicted as CB2R li
gands by ALPACA (92.34 %). Furthermore, comparing GEN3 to GEN1 
reveals that the inclusion of the IFsim optimization parameter results in 
an increased CB2Rsel value of 54.22 %, hence again supporting the 
notion that the IF inclusion enhances the probability of identifying 
molecules active on the target of interest, aligning with findings in the 
existing literature [82]. 

Based on this latest data, we conducted a thorough analysis of the 
GEN3 dataset to identify a concrete example of how DeLADrug-Self can 
enable the optimization of user-set parameters. Fig. 7 illustrates an 
example of the evolution of the starting molecule (1) during the per
formed generations from a structural perspective (Fig. 7A) and in rela
tion to the parameters used during the multi-objective optimization 
(Fig. 7B). As highlighted in the figure, the algorithm significantly im
proves DS (from − 8.93 to − 10.19 kcal/mol), maintaining a good simi
larity to the starting molecule and, more importantly, a binding mode 
similar to that experimentally observed for the co-crystallized ligand 
(IFsim always >0.6). Interestingly, the modifications introduced by 
DeLA-Drug-Self allow for a reduction in the lipophilicity, highly desirable 
in the context of the design of CB2 modulators [84], as the logP value 
decreases from 4.95 to 2.53, (Fig. 7A and B). The proposed changes 

(specifically the insertion of nitrogen atoms and the elongation of the 
alkyl chain attached to the phenyl group) enable the establishment of 
new interactions for these ligands, particularly with T114 and W194, as 
highlighted in Fig. 7C, representing the top-scored docking pose of the 
final molecule 5. Remarkably, compound 5 represents an example of 
data-driven lead optimization. Indeed, our algorithm herein suggests 
how to improve both pharmacokinetic and originality of the lead com
pound. Additionally, the synthesis of 5 can be easily carried out, thanks 
to the commercial availability of required reagents or documented 
synthetic procedures (as detailed in reference [85]). This further un
derscores the capability of DeLA-DrugSelf to generate compounds with 
practical applicability in real-life scenarios. 

3.4. DeLA-DrugSelf: A user-friendly web tool 

DeLA-DrugSelf is a user-friendly web tool accessible at https://www. 
ba.ic.cnr.it/softwareic/delaself/. Users can input a query molecule in 
two ways: either by drawing its 2D structure using the JSME canvas 
applet [86] or by entering a SMILES string into the provided text field. 
Additionally, JSME allows for the direct importation of .mol or .SDF files 
into the system. Users can configure the tool according to their prefer
ences by adjusting parameters such as the desired number of compounds 
(ranging from 10 to 100, default setting: 10) and the number of muta
tions (ranging from 1 to 5, default setting: 1). It is important to note that 
a context C = 12 is utilized for generation. Noteworthy, upon inserting 
the query molecule, the web portal provides a QED value for that 
molecule. If this score falls below a certain threshold (<0.35), it is 
flagged to the user as a warning, and she/he has the option to decide 
whether to proceed with generating analogues or not. Upon completion 
of the generation process, the tool presents an interactive list of uncol
lapsed SELFIES (converted in SMILES format for the sake of simplicity) 
with SA values not exceeding one unit in comparison to the starting 
query. Users can explore this list in several ways: firstly, compounds are 
ranked based on their QED, SA, and Tanimoto similarity to the query. 
Secondly, users have the option to download the ranking as SMILES (in . 
txt format) or .SDF files. Furthermore, the 2D structures of the generated 
compounds are readily accessible via the JSME editor by clicking on the 
corresponding SMILES string. At the user’s request, the platform also 

Fig. 6. Number of total generated molecules owning DSs higher than the lead molecule (HDS) plotted against the number of generation loops for the GEN3 set (A). 
Docking scores (reported as absolute values - DSs) (B), synthetic accessibility (SA) score (C), interaction fingerprints Tanimoto similarity (IFsim) score (E) and the 
Tanimoto similarity (sim) with respect to the starting molecule, calculated by computing Morgan circular fingerprints with a radius of 2 (E) distributions returned by 
all the compounds belonging to the GEN3 set along with the respective values owned by the lead compound represented as vertical red lines. Joint distributions of 
DS-SA (F), DS-IFsim (G) and DS-sim (H) are also provided. 

Table 3 
The quantitative estimate of drug-likeness (QED) score, the synthetic accessi
bility (SA) score, the internal diversity (ID) and the percentage of generated 
compounds without structural alerts known to be responsible for false positives 
in vitro assays (PAINS) for the GEN1, GEN2 and GEN3 sets along with the per
centage of the generated molecules having a docking score against CB2R higher 
than that returned by the query (HDS) and the percentage of HDS compounds 
predicted by ALPACA [58] as high-affinity CB2R binders (CB2Rsel).  

Generation QED SA ID PAINS 
(%) 

HDS 
(%) 

CB2Rsel 
(%) 

GEN1 0.50 ±
0.17 

3.04 ±
0.77 

0.74 99.41 34.08 35.92 

GEN2 0.57 ±
0.15 

3.54 ±
0.48 

0.54 99.87 54.32 92.34 

GEN3 0.58 ±
0.17 

3.12 ±
0.75 

0.71 99.13 22.27 54.22  
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provides predictions on whether the generated compounds will interact 
with specific cytochrome P450 isoforms, including CYP1A2, CYP2A6, 
CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. 
This prediction is performed by the software program CypReact, as 
detailed in the publication by Tian et al. [87]. Links to download the 
resulting data are sent to the user’s provided email address. Addition
ally, the “History” page stores a record of all user executions, containing 
details such as input SMILES and generated output. Fig. 8 illustrates an 
example of output page returned by the tool after a generation per
formed using the default settings. 

4. Conclusions 

In this paper, we introduce DeLA-DrugSelf, a novel deep-learning 
algorithm designed for generating analogues of drug-like compounds. 
This algorithm serves as a mutational operator within a genetic algo
rithm framework, enabling multi-objective optimizations based on user- 
defined parameters. While sharing the general architecture (RNN model 
composed of two layers of LSTM cells) with its predecessor (e.g.; DeLA- 
Drug) [22] DeLA-DrugSelf incorporates crucial advancements. Primarily, 
it employs a more robust molecular representation string, named 
SELFIES (SELF-referencing Embedded String) [47]. Furthermore, it can 
perform generation not only through token substitutions but also in
sertions and deletions. This versatility makes it particularly well-suited 
for data-driven scaffold decoration and lead optimization tasks. Our 
analysis of the generated libraries highlights significant improvements 
in terms of drug-likeness, uniqueness, and novelty of the compounds. It 
emphasizes that minimizing collapse in generative algorithms for 
automated optimization procedures is critical, as evident from clear 
correlations between collapse rates and two quality metrics (e.g.; QED 
and SA). DeLA-DrugSelf was further evaluated as a tool for optimizing a 
compound known to efficiently bind CB2R, a target implicated in 
various pathological conditions such as cancer and neurodegeneration 
[84,88]. The obtained data underscore the ability of the algorithm, now 
available as a user-friendly web platform (http://www.ba.ic.cnr.it/s 
oftwareic/delaself/), to automatically enhance both pharmacokinetics 

and predicted binding affinity of the initial lead compound while 
maintaining high synthetic accessibility. While further improvements, 
already planned by our group, are desirable (e.g.; using alternative ar
chitectures other than RNNs), the discussed data supports DeLA-DrugSelf 
as a valuable tool for the de novo design of compounds with practical 
applicability in real-life scenarios. 

Data and software availability 

The following data are made available in the supporting information: 

List of the compounds generated via SFS approach setting C = 1, 
including the corresponding degree of collapse D 

(c1.csv); 
List of the compounds generated via SFS approach setting C = 2, 
including the corresponding degree of collapse D 

(c2.csv); 
List of the compounds generated via SFS approach setting C = 4, 
including the corresponding degree of collapse D 

(c4.csv); 
List of the compounds generated via SFS approach setting C = 6, 
including the corresponding degree of collapse D 

(c6.csv); 
List of the compounds generated via SFS approach setting C = 8, 
including the corresponding degree of collapse D 

(c8.csv); 
List of the compounds generated via SFS approach setting C = 10, 
including the corresponding degree of collapse D 

(c10.csv); 
List of the compounds generated via SFS approach setting C = 12, 
including the corresponding degree of collapse D 

(c12.csv); 
List of the compounds generated via SFS approach setting C = 14, 
including the corresponding degree of collapse D 

(c14.csv); 

Fig. 7. An example of structural evolution of the starting query (1) performed by DeLA-DrugSelf during the generation of the GEN3 set (A); values returned by all the 
parameters used as objectives during the generation of the GEN3 set, docking scores (reported as absolute values - DS), synthetic accessibility (SA) score, interaction 
fingerprints Tanimoto similarity (IFsim) score, the Tanimoto similarity (sim) with respect to the starting molecule, calculated by computing Morgan circular fin
gerprints with a radius of 2 and the logarithm of the partition coefficient (logP), for the compounds 1–5 (B); top-scored docking pose returned by the final compound 
5 (C). Notice that the ligand and important residues are rendered as sticks, the protein as cartoon and the main intermolecular (ligand-protein) interactions according 
to the following scheme: H-bond interactions (dotted black lines), pi-pi and cation-pi interactions (blue lines). For the sake of clarity, only polar hydrogen atoms 
are shown. 
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List of the compounds generated via SWM approach setting C = 12 
and M = 1, including the corresponding degree of collapse D 

(c12_m1.csv); 
List of the compounds generated via SWM approach setting C = 12 
and M = 2, including the corresponding degree of collapse D 

(c12_m2.csv); 
List of the compounds generated via SWM approach setting C = 12 
and M = 3, including the corresponding degree of collapse D 

(c12_m3.csv); 
List of the compounds generated via SWM approach setting C = 12 
and M = 4, including the corresponding degree of collapse D 

(c12_m4.csv); 
List of the compounds generated via SWM approach setting C = 12 
and M = 5, including the corresponding degree of collapse D 

(c12_m5.csv); 
List of the compounds belonging to the GEN1 dataset, including the 
corresponding docking scores, similarity respect to the query com
pound and SA score 

(GEN1.csv). 
List of the compounds belonging to the GEN2 dataset, including the 
corresponding docking scores, similarity respect to the query com
pound and SA score 

(GEN2.csv). 
List of the compounds belonging to the GEN3 dataset, including the 
corresponding docking scores, interaction fingerprints similarity, 
similarity respect to the query compound and SA score 

(GEN3.csv). 

Quality Metrics (QED, SA and QS) computed over 50 molecules 
generated using the structure of aspirin (QED = 0.55, SA = 1.58) as 
query and using both DeLA-Drug (1 and 5 substitutions) and DeLA- 
DrugSelf (1 and 5 mutations) (Table S1 in the Supporting 
Information). 
Quality Metrics (QED, SA and QS) computed over 50 molecules 
generated using the structure of paracetamol (QED = 0.59, SA =
1.41). as query and using both DeLA-Drug (1 and 5 substitutions) and 
DeLA-DrugSelf (1 and 5 mutations) (Table S2 in the supporting 
information). 
The code of DeLADrug-Self can be freely downloaded at https://gith 
ub.com/alberdom88/DeLA-DrugSelf 
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M. Nápoles-Duarte, A. Nigam, R. Pollice, K. Rajan, U. Schatzschneider, 
P. Schwaller, M. Skreta, B. Smit, F. Strieth-Kalthoff, C. Sun, G. Tom, G. Falk von 
Rudorff, A. Wang, A.D. White, A. Young, R. Yu, A. Aspuru-Guzik, SELFIES and the 
future of molecular string representations, Patterns 3 (2022) 100588, https://doi. 
org/10.1016/j.patter.2022.100588. 

[49] A. Nigam, R. Pollice, M. Krenn, G. dos Passos Gomes, A. Aspuru-Guzik, Beyond 
generative models: superfast traversal, optimization, novelty, exploration and 
discovery (STONED) algorithm for molecules using SELFIES, Chem. Sci. 12 (2021) 
7079–7090, https://doi.org/10.1039/D1SC00231G. 

[50] L. Chen, Q. Shen, J. Lou, Magicmol: a light-weighted pipeline for drug-like 
molecule evolution and quick chemical space exploration, BMC Bioinf. 24 (2023) 
173, https://doi.org/10.1186/s12859-023-05286-0. 

[51] S. Piao, J. Choi, S. Seo, S. Park, SELF-EdiT: structure-constrained molecular 
optimisation using SELFIES editing transformer, Appl. Intell. 53 (2023) 
25868–25880, https://doi.org/10.1007/s10489-023-04915-8. 

[52] J. Choi, S. Seo, S. Choi, S. Piao, C. Park, S.J. Ryu, B.J. Kim, S. Park, ReBADD-SE: 
multi-objective molecular optimisation using SELFIES fragment and off-policy self- 
critical sequence training, Comput. Biol. Med. 157 (2023) 106721, https://doi.org/ 
10.1016/j.compbiomed.2023.106721. 

[53] F. Grisoni, Chemical language models for de novo drug design: Challenges and 
opportunities, Curr. Opin. Struct. Biol. 79 (2023) 102527, https://doi.org/ 
10.1016/j.sbi.2023.102527. 

[54] G. Lamanna, P. Delre, G. Marcou, M. Saviano, A. Varnek, D. Horvath, G. 
F. Mangiatordi, GENERA: a combined genetic/deep-learning algorithm for 
multiobjective target-oriented de novo design, J. Chem. Inf. Model. 63 (2023) 
5107–5119, https://doi.org/10.1021/acs.jcim.3c00963. 

[55] G.F. Mangiatordi, F. Intranuovo, P. Delre, F.S. Abatematteo, C. Abate, M. Niso, T. 
M. Creanza, N. Ancona, A. Stefanachi, M. Contino, Cannabinoid receptor subtype 2 
(CB2R) in a multitarget approach: perspective of an innovative strategy in cancer 
and neurodegeneration, J. Med. Chem. 63 (2020) 14448–14469, https://doi.org/ 
10.1021/acs.jmedchem.0c01357. 

[56] F. Intranuovo, L. Brunetti, P. DelRe, G.F. Mangiatordi, A. Stefanachi, A. Laghezza, 
M. Niso, F. Leonetti, F. Loiodice, A. Ligresti, M. Kostrzewa, J. Brea, M.I. Loza, 
E. Sotelo, M. Saviano, N.A. Colabufo, C. Riganti, C. Abate, M. Contino, 
Development of N-(1-Adamantyl)benzamides as novel anti-inflammatory 
multitarget agents acting as dual modulators of the cannabinoid CB2 receptor and 
fatty acid amide hydrolase, J. Med. Chem. 66 (2023) 235–250, https://doi.org/ 
10.1021/acs.jmedchem.2c01084. 

[57] G.F. Mangiatordi, M.M. Cavalluzzi, P. Delre, G. Lamanna, M.C. Lumuscio, 
M. Saviano, J.-P. Majoral, S. Mignani, A. Duranti, G. Lentini, Endocannabinoid 
degradation enzyme inhibitors as potential antipsychotics: a medicinal chemistry 
perspective, Biomedicines 11 (2023) 469, https://doi.org/10.3390/ 
biomedicines11020469. 

[58] P. Delre, M. Contino, D. Alberga, M. Saviano, N. Corriero, G.F. Mangiatordi, 
ALPACA: a machine Learning Platform for Affinity and selectivity profiling of 

CAnnabinoids receptors modulators, Comput. Biol. Med. 164 (2023) 107314, 
https://doi.org/10.1016/j.compbiomed.2023.107314. 

[59] A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, 
S. McGlinchey, D. Michalovich, B. Al-Lazikani, J.P. Overington, ChEMBL: a large- 
scale bioactivity database for drug discovery, Nucleic Acids Res. 40 (2012) 
D1100–D1107, https://doi.org/10.1093/nar/gkr777. 

[60] M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, 
B. Wiswedel, KNIME - the Konstanz information miner: version 2.0 and beyond, 
SIGKDD Explor. Newsl 11 (2009) 26–31, https://doi.org/10.1145/ 
1656274.1656280. 

[61] S. Beisken, T. Meinl, B. Wiswedel, L.F. de Figueiredo, M. Berthold, C. Steinbeck, 
KNIME-CDK: workflow-driven cheminformatics, BMC Bioinf. 14 (2013) 257, 
https://doi.org/10.1186/1471-2105-14-257. 

[62] G. Landrum, P. Tosco, B. KelleyRic, D. Cosgrovesriniker, gedeck, R. Vianello, 
NadineSchneider, E. Kawashima, G. Jones, D. N, A. Dalke, B. Cole, M. Swain, 
S. Turk, AlexanderSavelyev, A. Vaucher, M. Wójcikowski, I. Take, V.F. Scalfani, 
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