In a recent investigation carried out on a panel of trimethoxybenzanilides, we showed that the formation of an intramolecular hydrogen bond is a key element for tuning P-gp inhibitory activity. In this study, we designed new structurally simplified trimethoxy benzamides (5–17, Table) with the aim to uncover the minimal molecular requirements needed for P-gp inhibition. The new prepared smaller-sized compounds exhibited IC50 in the low micromolar range. The combined use of NMR and DFT studies suggested that molecular flatness is causatively related to the P-gp inhibition. Our results clearly pointed out that concerted theoretical and experimental approaches herein presented might be very helpful in addressing the design of structurally simplified and highly efficient compounds biasing P-gp protein.
Design, synthesis, biological evaluation, NMR and DFT studies of structurally-simplified trimethoxy benzamides as P-glycoprotein selective inhibitors: the role of molecular flatness
STEFANACHI, ANGELA;MANGIATORDI, Giuseppe Felice;TARDIA, PIERO;ALBERGA, DOMENICO;LEONETTI, Francesco;NISO, MAURO;COLABUFO, Nicola Antonio;NICOLOTTI, ORAZIO;CELLAMARE, Saverio
2016-01-01
Abstract
In a recent investigation carried out on a panel of trimethoxybenzanilides, we showed that the formation of an intramolecular hydrogen bond is a key element for tuning P-gp inhibitory activity. In this study, we designed new structurally simplified trimethoxy benzamides (5–17, Table) with the aim to uncover the minimal molecular requirements needed for P-gp inhibition. The new prepared smaller-sized compounds exhibited IC50 in the low micromolar range. The combined use of NMR and DFT studies suggested that molecular flatness is causatively related to the P-gp inhibition. Our results clearly pointed out that concerted theoretical and experimental approaches herein presented might be very helpful in addressing the design of structurally simplified and highly efficient compounds biasing P-gp protein.File | Dimensione | Formato | |
---|---|---|---|
Stefanachi_et_al-2016-Chemical_Biology_&_Drug_Design.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.