The shift towards a vegetarian, vegan, or flexitarian diet has increased the demand for vegetable protein and plant-based foods. The defatted cake generated during the extraction of lipids from durum wheat (Triticum turgidum L. var. durum) milling by-products is a protein and fibre-containing waste, which could be upcycled as a food ingredient. This study aimed to exploit the dry-fractionated fine fraction of defatted durum wheat cake (DFFF) to formulate a vegan, clean labelled, cereal-based snack bar. The design of experiments (DoEs) for mixtures was applied to formulate a final product with optimal textural and sensorial properties, which contained 10% DFFF, 30% glucose syrup, and a 60% mix of puffed/rolled cereals. The DFFF-enriched snack bar was harder compared to the control without DFFF (cutting stress = 1.2 and 0.52 N/mm(2), and fracture stress = 12.9 and 9.8 N/mm(2) in the DFFF-enriched and control snack bar, respectively), due to a densifying effect of DFFF, and showed a more intense yellow hue due to the yellow-brownish colour of DFFF. Another difference was in the caramel flavour, which was more intense in the DFFF-enriched snack bar. The nutritional claims "low fat" and "source of fibre" were applicable to the DFFF-enriched snack bar according to EC Reg. 1924/06.
Developing a Clean Labelled Snack Bar Rich in Protein and Fibre with Dry-Fractionated Defatted Durum Wheat Cake
Squeo, Giacomo;Latrofa, Vittoria;Vurro, Francesca;De Angelis, Davide;Caponio, Francesco;Summo, Carmine;Pasqualone, Antonella
2023-01-01
Abstract
The shift towards a vegetarian, vegan, or flexitarian diet has increased the demand for vegetable protein and plant-based foods. The defatted cake generated during the extraction of lipids from durum wheat (Triticum turgidum L. var. durum) milling by-products is a protein and fibre-containing waste, which could be upcycled as a food ingredient. This study aimed to exploit the dry-fractionated fine fraction of defatted durum wheat cake (DFFF) to formulate a vegan, clean labelled, cereal-based snack bar. The design of experiments (DoEs) for mixtures was applied to formulate a final product with optimal textural and sensorial properties, which contained 10% DFFF, 30% glucose syrup, and a 60% mix of puffed/rolled cereals. The DFFF-enriched snack bar was harder compared to the control without DFFF (cutting stress = 1.2 and 0.52 N/mm(2), and fracture stress = 12.9 and 9.8 N/mm(2) in the DFFF-enriched and control snack bar, respectively), due to a densifying effect of DFFF, and showed a more intense yellow hue due to the yellow-brownish colour of DFFF. Another difference was in the caramel flavour, which was more intense in the DFFF-enriched snack bar. The nutritional claims "low fat" and "source of fibre" were applicable to the DFFF-enriched snack bar according to EC Reg. 1924/06.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.