Near infrared (950−1654 nm) hyperspectral imaging (NIR-HSI) was applied for the first time for the prediction of proximate composition (proteins, carbohydrates, lipids, ashes) and alpha-galactosides (verbascose, stachyose, raffinose) content of texturized vegetable proteins (TVP) obtained from different raw materials (four formulations) intended for plant-based meat analogues (PBMA) production. After exploration by Principal Component Analysis, the dataset was split into calibration and test sets and analyzed by Partial Least Squares Regression. In calibration and cross-validation, the R2 was between 0.92 and 0.98, with low error values. The figures of merit of the prediction confirm those results and the good performance of the models. Pixel-by-pixel prediction allowed the tracking of the non-uniform distribution of chemical components. Overall, NIR-HSI showed potentiality to be applied as a tool for rapid, accurate, and non-destructive quality control of TVP, which is fundamental as they strongly affect the nutritional and textural properties of PBMA.

Assessment of macronutrients and alpha-galactosides of texturized vegetable proteins by near infrared hyperspectral imaging

Squeo G.;De Angelis D.;Summo C.;Pasqualone A.;Caponio F.;
2022-01-01

Abstract

Near infrared (950−1654 nm) hyperspectral imaging (NIR-HSI) was applied for the first time for the prediction of proximate composition (proteins, carbohydrates, lipids, ashes) and alpha-galactosides (verbascose, stachyose, raffinose) content of texturized vegetable proteins (TVP) obtained from different raw materials (four formulations) intended for plant-based meat analogues (PBMA) production. After exploration by Principal Component Analysis, the dataset was split into calibration and test sets and analyzed by Partial Least Squares Regression. In calibration and cross-validation, the R2 was between 0.92 and 0.98, with low error values. The figures of merit of the prediction confirm those results and the good performance of the models. Pixel-by-pixel prediction allowed the tracking of the non-uniform distribution of chemical components. Overall, NIR-HSI showed potentiality to be applied as a tool for rapid, accurate, and non-destructive quality control of TVP, which is fundamental as they strongly affect the nutritional and textural properties of PBMA.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/389680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact