Over the course of the past decade, peroxisome proliferator-activated receptors (PPARs) have been identified as part of the cannabinoid signaling system: both phytocannabinoids and endocannabinoids are capable of binding and activating these nuclear receptors. Fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and other N-acylethanolamines. These substances have been shown to have numerous anticancer effects, and indeed the inhibition of FAAH has multiple beneficial effects that are mediated by PPARα subtype and by PPARγ subtype, especially antiproliferation and activation of apoptosis. The substrates of FAAH are also PPAR agonists, which explains the PPAR-mediated effects of FAAH inhibitors. Much like cannabinoid ligands and FAAH inhibitors, PPARγ agonists show antiproliferative effects on cancer cells, suggesting that additive or synergistic effects may be achieved through the positive modulation of both signaling systems. In this Miniperspective, we discuss the development of novel FAAH inhibitors able to directly act as PPAR agonists and their promising utilization as leads for the discovery of highly effective anticancer compounds.

New Approaches to Cancer Therapy: Combining Fatty Acid Amide Hydrolase (FAAH) Inhibition with Peroxisome Proliferator-Activated Receptors (PPARs) Activation

Brunetti, Leonardo;Loiodice, Fulvio;Piemontese, Luca;Tortorella, Paolo;Laghezza, Antonio
2019-01-01

Abstract

Over the course of the past decade, peroxisome proliferator-activated receptors (PPARs) have been identified as part of the cannabinoid signaling system: both phytocannabinoids and endocannabinoids are capable of binding and activating these nuclear receptors. Fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and other N-acylethanolamines. These substances have been shown to have numerous anticancer effects, and indeed the inhibition of FAAH has multiple beneficial effects that are mediated by PPARα subtype and by PPARγ subtype, especially antiproliferation and activation of apoptosis. The substrates of FAAH are also PPAR agonists, which explains the PPAR-mediated effects of FAAH inhibitors. Much like cannabinoid ligands and FAAH inhibitors, PPARγ agonists show antiproliferative effects on cancer cells, suggesting that additive or synergistic effects may be achieved through the positive modulation of both signaling systems. In this Miniperspective, we discuss the development of novel FAAH inhibitors able to directly act as PPAR agonists and their promising utilization as leads for the discovery of highly effective anticancer compounds.
File in questo prodotto:
File Dimensione Formato  
jmc2019_Just accepted.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.14 MB
Formato Adobe PDF
8.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/241870
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact