After a large screening on sourdough lactic acid bacteria, exopolysaccharide (EPS)-forming strains of Weissella cibaria, Lactobacillus plantarum, and Pediococcus pentosaceus were selected. After 6 days of incubation at 30 °C, the synthesis of EPS in MRS-based broth ranged from 5.54 to 7.88 mg mL-1. EPS had an apparent molecular mass of ca. 104 Da. As shown by carbohydrate consumption, the synthesis of EPS was found from sucrose only. Two types of homopolysaccharides were synthesized: glucans simultaneously with growth and fructans after 1 day of incubation. Two protein bands of ca. 180-200 kDa were in situ detected on SDS-PAGE gels incubated with sucrose. PCR products of ca. 220 bp were found for L. plantarum PL9 (100% of identity to putative priming glycosyltransferase of L. plantarum WCFS1) and W. cibaria WC4 (80% of identity to putative glycosyltransferase, epsD, of Bacillus cereus G9241) by using hybrid primers for the priming gtf genes. Degenerated primers DexreuR and DexreuV showed a unique PCR product, and the predicted amino acid sequences were identical for W. cibaria WC4 and L. plantarum PL9. The sequence had similarity with polysaccharide biosynthesis glycosyltransferases. W. cibaria WC4 or L. plantarum LP9 synthesized ca. 2.5 g kg-1 EPS during sourdough fermentation with sucrose added. Compared to the sourdough started with an EPS-negative strain, the sourdough started with W. cibaria WC4 or L. plantarum LP9 increased the viscosity, and the resulting bread had higher specific volume and lower firmness. The synthesis of EPS by selected sourdough lactic acid bacteria could be considered as a useful tool to replace the additives for improving the textural properties of baked goods.

Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum

DI CAGNO, RAFFAELLA;DE ANGELIS, MARIA;MINERVINI, FABIO;GOBBETTI, Marco
2006

Abstract

After a large screening on sourdough lactic acid bacteria, exopolysaccharide (EPS)-forming strains of Weissella cibaria, Lactobacillus plantarum, and Pediococcus pentosaceus were selected. After 6 days of incubation at 30 °C, the synthesis of EPS in MRS-based broth ranged from 5.54 to 7.88 mg mL-1. EPS had an apparent molecular mass of ca. 104 Da. As shown by carbohydrate consumption, the synthesis of EPS was found from sucrose only. Two types of homopolysaccharides were synthesized: glucans simultaneously with growth and fructans after 1 day of incubation. Two protein bands of ca. 180-200 kDa were in situ detected on SDS-PAGE gels incubated with sucrose. PCR products of ca. 220 bp were found for L. plantarum PL9 (100% of identity to putative priming glycosyltransferase of L. plantarum WCFS1) and W. cibaria WC4 (80% of identity to putative glycosyltransferase, epsD, of Bacillus cereus G9241) by using hybrid primers for the priming gtf genes. Degenerated primers DexreuR and DexreuV showed a unique PCR product, and the predicted amino acid sequences were identical for W. cibaria WC4 and L. plantarum PL9. The sequence had similarity with polysaccharide biosynthesis glycosyltransferases. W. cibaria WC4 or L. plantarum LP9 synthesized ca. 2.5 g kg-1 EPS during sourdough fermentation with sucrose added. Compared to the sourdough started with an EPS-negative strain, the sourdough started with W. cibaria WC4 or L. plantarum LP9 increased the viscosity, and the resulting bread had higher specific volume and lower firmness. The synthesis of EPS by selected sourdough lactic acid bacteria could be considered as a useful tool to replace the additives for improving the textural properties of baked goods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/125806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 119
  • ???jsp.display-item.citation.isi??? 114
social impact