The present study investigates the landslide dam deposits of a rock avalanche triggered in Yang Jia Gou, in Sichuan Province, using single-station three component recordings of ambient noise, with the aim of obtaining information about thickness and mechanical properties of the deposits from their resonance properties. Three noise measurement campaigns and two ERT surveys were conducted to support data interpretation. The data were analyzed using the traditional Nakamura’s technique, HVNR, and the innovative technique HVIP, both based on the calculation of ratios between horizontal and vertical amplitude of ground motion. Both methods revealed the presence of resonance peaks, a major one at lower frequency, and a minor one at higher frequencies, representative of the deposit layering. HVNR showed a considerable instability in terms of amplitude of H/V, likely because this technique analyzes the entire noise wave field recorded, so to be subject to a large variability related to a variable composition of the noise field. This problem does not affect the HVIP method, which is based on the analysis of the ellipticity of Rayleigh waves, isolated from the recording. Rayleigh wave ellipticity curves were used as targets in the inversion phase to obtain the velocity profile of the site. The subsoil model was constrained by the data derived from the resistivity profiles. The results revealed: different velocity layers inside the deposit; lateral variations in thickness, in accordance with the higher frequency peak, and in mechanical properties, with an increase of stiffness, probably due to a major portion of rocky blocks; an increase in thickness of the entire deposit, probably because of the irregularities of the substrate. Further investigations are in progress through other kinds of noise analysis exploiting the synchronization of simultaneous recordings. This can provide additional constraints (to be derived from the dispersion of group velocity of Rayleigh waves) and aid resolving interpretation ambiguities. How to cite: Capone, P., Del Gaudio, V., Wasowski, J., Hu, W., Venisti, N., and Li, Y.: Integration of ambient noise and ERT data to investigate the structure of the Yang Jia Gou rock avalanche deposits (Sichuan - China), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4578, https://doi.org/10.5194/egusphere-egu21-4578, 2021.

Integration of ambient noise and ERT data to investigate the structure of the Yang Jia Gou rock avalanche deposits (Sichuan - China)

Paola Capone;Vincenzo Del Gaudio;Nicola Venisti;
2021-01-01

Abstract

The present study investigates the landslide dam deposits of a rock avalanche triggered in Yang Jia Gou, in Sichuan Province, using single-station three component recordings of ambient noise, with the aim of obtaining information about thickness and mechanical properties of the deposits from their resonance properties. Three noise measurement campaigns and two ERT surveys were conducted to support data interpretation. The data were analyzed using the traditional Nakamura’s technique, HVNR, and the innovative technique HVIP, both based on the calculation of ratios between horizontal and vertical amplitude of ground motion. Both methods revealed the presence of resonance peaks, a major one at lower frequency, and a minor one at higher frequencies, representative of the deposit layering. HVNR showed a considerable instability in terms of amplitude of H/V, likely because this technique analyzes the entire noise wave field recorded, so to be subject to a large variability related to a variable composition of the noise field. This problem does not affect the HVIP method, which is based on the analysis of the ellipticity of Rayleigh waves, isolated from the recording. Rayleigh wave ellipticity curves were used as targets in the inversion phase to obtain the velocity profile of the site. The subsoil model was constrained by the data derived from the resistivity profiles. The results revealed: different velocity layers inside the deposit; lateral variations in thickness, in accordance with the higher frequency peak, and in mechanical properties, with an increase of stiffness, probably due to a major portion of rocky blocks; an increase in thickness of the entire deposit, probably because of the irregularities of the substrate. Further investigations are in progress through other kinds of noise analysis exploiting the synchronization of simultaneous recordings. This can provide additional constraints (to be derived from the dispersion of group velocity of Rayleigh waves) and aid resolving interpretation ambiguities. How to cite: Capone, P., Del Gaudio, V., Wasowski, J., Hu, W., Venisti, N., and Li, Y.: Integration of ambient noise and ERT data to investigate the structure of the Yang Jia Gou rock avalanche deposits (Sichuan - China), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4578, https://doi.org/10.5194/egusphere-egu21-4578, 2021.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/468021
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact