Dietary inadequacy and nutrition-related non-communicable diseases (N-NCDs) represent two main issues for the whole society, urgently requesting solutions from researchers, policy-makers, and other stakeholders involved in the health and food system. Food by-products and wastes (FBPW) represent a global problem of increasing severity, widely recognized as an important unsustainability hotspot, with high socio-economic and environmental costs. Yet, recycling and up-cycling of FBPW to produce functional foods could represent a solution to dietary inadequacy and risk of N-NCDs onset. Bioprocessing of FBPW with selected microorganisms appears to be a relatively cheap strategy to yield molecules (or rather molecules mixtures) that may be used to fortify/enrich food, as well as to formulate dietary supplements. This review, conjugating human health and sustainability in relation to food, describes the state-of-the-art of the use of yeasts, molds, and lactic acid bacteria for producing value-added compounds from FBPW. Challenges related to FBPW bioprocessing prior to their use in food regard will be also discussed: (i) loss of product functionality upon scale-up of recovery process; (ii) finding logistic solutions to the intrinsic perishability of the majority of FBPW; (iii) inserting up-cycling of FBPW in an appropriate legislative framework; (iv) increasing consumer acceptability of food and dietary supplements derived from FBPW.
Sustainable and Health-Protecting Food Ingredients from Bioprocessed Food by-Products and Wastes
Minervini F.
;De Boni A.;Fiorino G. M.;De Angelis M.
2022-01-01
Abstract
Dietary inadequacy and nutrition-related non-communicable diseases (N-NCDs) represent two main issues for the whole society, urgently requesting solutions from researchers, policy-makers, and other stakeholders involved in the health and food system. Food by-products and wastes (FBPW) represent a global problem of increasing severity, widely recognized as an important unsustainability hotspot, with high socio-economic and environmental costs. Yet, recycling and up-cycling of FBPW to produce functional foods could represent a solution to dietary inadequacy and risk of N-NCDs onset. Bioprocessing of FBPW with selected microorganisms appears to be a relatively cheap strategy to yield molecules (or rather molecules mixtures) that may be used to fortify/enrich food, as well as to formulate dietary supplements. This review, conjugating human health and sustainability in relation to food, describes the state-of-the-art of the use of yeasts, molds, and lactic acid bacteria for producing value-added compounds from FBPW. Challenges related to FBPW bioprocessing prior to their use in food regard will be also discussed: (i) loss of product functionality upon scale-up of recovery process; (ii) finding logistic solutions to the intrinsic perishability of the majority of FBPW; (iii) inserting up-cycling of FBPW in an appropriate legislative framework; (iv) increasing consumer acceptability of food and dietary supplements derived from FBPW.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.