Concentration is a key determinant in the overall positive impact of terpenes on milk and cheese aroma; additionally, route of intake may affect the achievable concentrations of dietary terpenes in milk and cheese. In this study, we explored the possibility that the amount of the monoterpene limonene transferred to sheep milk and its corresponding cheese could differ depending on the route of intake and that the aroma profile of these products could also differ. To this aim, 12 lactating dairy ewes were repeatedly exposed to limonene by the oral or respiratory route during a 48-h test period, according to a 3 × 3 Latin square experimental design. Limonene content was measured in individual and bulk milk samples, in 1-d-old and 15-d-old Caciotta cheese obtained from that milk, in the related whey and curd, and in the air inhaled by the ewes in the respiratory treatment group (to obtain an estimate of the dose actually supplied by this route). Bulk milk and fresh (1-d-old) cheese underwent sensory analysis by ortho-olfactory evaluation. Both intake routes demonstrated transfer of limonene to milk, but the respiratory route transferred limonene with greater efficiency than the oral route. Moreover, according to the protocol used in this study, a short period of respiratory exposure induced a slightly higher limonene content in milk compared with oral exposure. As to the fate of limonene during cheesemaking, an important part of it was lost into the whey, perhaps through volatilization. The differences between milk and cheese tended to dissipate in curd and fresh cheese and disappeared completely after 15 d of ripening. Finally, it was possible to distinguish between the 2 routes of limonene intake using sensory analysis, even though no direct relationship was identified between the different aroma profiles of milks and cheeses from the oral and respiratory groups and their respective limonene contents. Overall, our results expand current knowledge on the biological pathways of terpene transfer from feed to sheep milk and cheese, as well as on the role played by terpenes in the formation of aroma in these products. Our observations may contribute to future development of strategies for external control and better standardization of the presence of odor compounds in milk and cheese from dairy ruminants.
Ingested versus inhaled limonene in sheep: A pilot study to explore potential different transfer to the mammary gland and effects on milk and Caciotta cheese aroma
M. Faccia;A. Maggiolino
;G. Natrella;C. Zizzadoro;A. Bragaglio;P. De Palo
2022-01-01
Abstract
Concentration is a key determinant in the overall positive impact of terpenes on milk and cheese aroma; additionally, route of intake may affect the achievable concentrations of dietary terpenes in milk and cheese. In this study, we explored the possibility that the amount of the monoterpene limonene transferred to sheep milk and its corresponding cheese could differ depending on the route of intake and that the aroma profile of these products could also differ. To this aim, 12 lactating dairy ewes were repeatedly exposed to limonene by the oral or respiratory route during a 48-h test period, according to a 3 × 3 Latin square experimental design. Limonene content was measured in individual and bulk milk samples, in 1-d-old and 15-d-old Caciotta cheese obtained from that milk, in the related whey and curd, and in the air inhaled by the ewes in the respiratory treatment group (to obtain an estimate of the dose actually supplied by this route). Bulk milk and fresh (1-d-old) cheese underwent sensory analysis by ortho-olfactory evaluation. Both intake routes demonstrated transfer of limonene to milk, but the respiratory route transferred limonene with greater efficiency than the oral route. Moreover, according to the protocol used in this study, a short period of respiratory exposure induced a slightly higher limonene content in milk compared with oral exposure. As to the fate of limonene during cheesemaking, an important part of it was lost into the whey, perhaps through volatilization. The differences between milk and cheese tended to dissipate in curd and fresh cheese and disappeared completely after 15 d of ripening. Finally, it was possible to distinguish between the 2 routes of limonene intake using sensory analysis, even though no direct relationship was identified between the different aroma profiles of milks and cheeses from the oral and respiratory groups and their respective limonene contents. Overall, our results expand current knowledge on the biological pathways of terpene transfer from feed to sheep milk and cheese, as well as on the role played by terpenes in the formation of aroma in these products. Our observations may contribute to future development of strategies for external control and better standardization of the presence of odor compounds in milk and cheese from dairy ruminants.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.