Making cheese from donkey milk is considered unfeasible, due to difficulties in coagulation and curd forming. Two recent studies have reported the protocols for making fresh cheese by using camel chymosin or calf rennet, but the chemical and sensory characteristics of the products were not thoroughly investigated. The present paper aims to give a further contribution to the field, by investigating cheesemaking with microbial rennet and evaluating the chemical composition, total fatty acid, volatile organic compounds (VOCs) and sensory profile of the resultant product. Six trials were undertaken at laboratory scale on donkey milk from a Martina Franca ass, by applying the technological scheme as reported for calf rennet, with some modifications. Bulk cow milk was used as a control. Donkey milk coagulated rapidly, but the curd remained soft, and was only suitable for making fresh cheese; differently, cow milk coagulated almost instantaneously under these strong technological conditions, giving rise to a semi-hard curd in very short time. The moisture level of donkey cheese was almost the same as reported in the literature, whereas the yield was higher, probably due to the high protein content of the milk used. The total fatty acid composition of cheese presented some differences with respect to milk, mostly consisting in a higher presence of saturated compounds. A connection with a better retention of the large sized fat globules into the curd was hypothesised and discussed. The VOC analyses, performed by solid-phase micro extraction gas chromatography-mass spectrometry, allowed the identification of 11 compounds in milk and 18 in cheese. The sensory characteristics of donkey cheese were strongly different with respect to the control, and revealed unique and pleasant flavours.
Chemical-Sensory Traits of Fresh Cheese Made by Enzymatic Coagulation of Donkey Milk
Michele FacciaWriting – Original Draft Preparation
;Giuseppe Gambacorta
Membro del Collaboration Group
;Graziana DifonzoMembro del Collaboration Group
;Angela Gabriella D'AlessandroMembro del Collaboration Group
2020-01-01
Abstract
Making cheese from donkey milk is considered unfeasible, due to difficulties in coagulation and curd forming. Two recent studies have reported the protocols for making fresh cheese by using camel chymosin or calf rennet, but the chemical and sensory characteristics of the products were not thoroughly investigated. The present paper aims to give a further contribution to the field, by investigating cheesemaking with microbial rennet and evaluating the chemical composition, total fatty acid, volatile organic compounds (VOCs) and sensory profile of the resultant product. Six trials were undertaken at laboratory scale on donkey milk from a Martina Franca ass, by applying the technological scheme as reported for calf rennet, with some modifications. Bulk cow milk was used as a control. Donkey milk coagulated rapidly, but the curd remained soft, and was only suitable for making fresh cheese; differently, cow milk coagulated almost instantaneously under these strong technological conditions, giving rise to a semi-hard curd in very short time. The moisture level of donkey cheese was almost the same as reported in the literature, whereas the yield was higher, probably due to the high protein content of the milk used. The total fatty acid composition of cheese presented some differences with respect to milk, mostly consisting in a higher presence of saturated compounds. A connection with a better retention of the large sized fat globules into the curd was hypothesised and discussed. The VOC analyses, performed by solid-phase micro extraction gas chromatography-mass spectrometry, allowed the identification of 11 compounds in milk and 18 in cheese. The sensory characteristics of donkey cheese were strongly different with respect to the control, and revealed unique and pleasant flavours.File | Dimensione | Formato | |
---|---|---|---|
foods-09-00016 donkey cheese.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.