Structure of lactic acid bacteria biota in ivy flowers, fresh bee-collected pollen (BCP), hive-stored bee bread, and honeybee gastrointestinal tract was investigated. Although a large microbial diversity characterized flowers and fresh BCP, most of lactic acid bacteria species disappeared throughout the bee bread maturation, giving way to Lactobacillus kunkeei and Fructobacillus fructosus to dominate long stored bee bread and honeybee crop. Adaptation of lactic acid bacteria was mainly related to species-specific, and, more in deep, to strain-specific features. Bee bread preservation seemed related to bacteria metabolites, produced especially by some L. kunkeei strains, which likely gave to lactic acid bacteria the capacity to outcompete other microbial groups. A protocol to ferment BCP was successfully set up, which included the mixed inoculum of selected L. kunkeei strains and Hanseniaspora uvarum AN8Y27B, almost emulating the spontaneous fermentation of bee bread. The strict relationship between lactic acid bacteria and yeasts during bee bread maturation was highlighted. The use of the selected starters increased the digestibility and bioavailability of nutrients and bioactive compounds naturally occurring in BCP. Our biotechnological protocol ensured a product microbiologically stable and safe. Conversely, raw BCP was more exposed to the uncontrolled growth of yeasts, moulds, and other bacterial groups.
Novel solid-state fermentation of bee-collected pollen emulating the natural fermentation process of bee bread
Di Cagno, Raffaella;Filannino, Pasquale
;Cantatore, Vincenzo;Gobbetti, Marco
2019-01-01
Abstract
Structure of lactic acid bacteria biota in ivy flowers, fresh bee-collected pollen (BCP), hive-stored bee bread, and honeybee gastrointestinal tract was investigated. Although a large microbial diversity characterized flowers and fresh BCP, most of lactic acid bacteria species disappeared throughout the bee bread maturation, giving way to Lactobacillus kunkeei and Fructobacillus fructosus to dominate long stored bee bread and honeybee crop. Adaptation of lactic acid bacteria was mainly related to species-specific, and, more in deep, to strain-specific features. Bee bread preservation seemed related to bacteria metabolites, produced especially by some L. kunkeei strains, which likely gave to lactic acid bacteria the capacity to outcompete other microbial groups. A protocol to ferment BCP was successfully set up, which included the mixed inoculum of selected L. kunkeei strains and Hanseniaspora uvarum AN8Y27B, almost emulating the spontaneous fermentation of bee bread. The strict relationship between lactic acid bacteria and yeasts during bee bread maturation was highlighted. The use of the selected starters increased the digestibility and bioavailability of nutrients and bioactive compounds naturally occurring in BCP. Our biotechnological protocol ensured a product microbiologically stable and safe. Conversely, raw BCP was more exposed to the uncontrolled growth of yeasts, moulds, and other bacterial groups.File | Dimensione | Formato | |
---|---|---|---|
Bee_Pollen.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.