This study was aimed at improving the functional attributes and shelf life of burrata cheese by using protective lactobacilli (Lactobacillus plantarum LPAL and Lactobacillus rhamnosus LRB), fructooligosaccharides, and inulin. Six burrata cheeses were made using (i) the traditional protocol (control), (ii) the addition of 0.5% fructooligosaccharides and inulin (DF cheese), (iii) protective lactobacilli in milk alone (PL cheese), (iv) protective lactobacilli in milk and governing liquid (2PL cheese), (v) protective lactobacilli in milk and dietary fibers (DF_PL cheese), and (vi) protective lactobacilli in milk and governing liquid and dietary fibers (DF_2PL cheese). As expected, DF, DF_PL, and DF_2PL cheeses showed 1.5% of total fibers. Burrata cheeses produced by adding protective lactobacilli only in milk (PL and DF_PL cheeses) showed the lowest acidification during cheese making and storage. Lactic and acetic acids and ethanol were found at the lowest concentrations in these samples. Analyses of cultivable microbiota and the microbiome showed that protective lactobacilli reduced the house microbiota components (e.g., Streptococcus thermophilus, Lactococcus lactis, and Leuconostoc lactis) during cheese making and storage. Protective lactobacilli slowed the growth of staphylococci, coliforms, and Pseudomonas spp., especially in early storage. According to the different microbiome assemblies, burrata samples differed in peptide profiles and the levels of free amino acids. As shown by a sensory analysis, the addition of protective lactobacilli in milk improved the flavor and increased the shelf life of burrata cheese. In comparison to cheeses made using protective cultures only in milk, the shelf lives of those containing cultures also in the governing liquid were not further prolonged and they received lower acceptability scores by the panelists.

Dietary Fibers and Protective Lactobacilli Drive Burrata Cheese Microbiome

Minervini F.;Gobbetti M.;De Angelis M.
2017-01-01

Abstract

This study was aimed at improving the functional attributes and shelf life of burrata cheese by using protective lactobacilli (Lactobacillus plantarum LPAL and Lactobacillus rhamnosus LRB), fructooligosaccharides, and inulin. Six burrata cheeses were made using (i) the traditional protocol (control), (ii) the addition of 0.5% fructooligosaccharides and inulin (DF cheese), (iii) protective lactobacilli in milk alone (PL cheese), (iv) protective lactobacilli in milk and governing liquid (2PL cheese), (v) protective lactobacilli in milk and dietary fibers (DF_PL cheese), and (vi) protective lactobacilli in milk and governing liquid and dietary fibers (DF_2PL cheese). As expected, DF, DF_PL, and DF_2PL cheeses showed 1.5% of total fibers. Burrata cheeses produced by adding protective lactobacilli only in milk (PL and DF_PL cheeses) showed the lowest acidification during cheese making and storage. Lactic and acetic acids and ethanol were found at the lowest concentrations in these samples. Analyses of cultivable microbiota and the microbiome showed that protective lactobacilli reduced the house microbiota components (e.g., Streptococcus thermophilus, Lactococcus lactis, and Leuconostoc lactis) during cheese making and storage. Protective lactobacilli slowed the growth of staphylococci, coliforms, and Pseudomonas spp., especially in early storage. According to the different microbiome assemblies, burrata samples differed in peptide profiles and the levels of free amino acids. As shown by a sensory analysis, the addition of protective lactobacilli in milk improved the flavor and increased the shelf life of burrata cheese. In comparison to cheeses made using protective cultures only in milk, the shelf lives of those containing cultures also in the governing liquid were not further prolonged and they received lower acceptability scores by the panelists.
File in questo prodotto:
File Dimensione Formato  
Burrata Appl. Environ. Microbiol.-2017.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/209279
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact