Alzheimer's disease is a neurodegenerative condition with no effective cure, and current therapies, like donepezil, only alleviate symptoms. Research has explored cholinesterase inhibitors and strategies targeting tau protein, often combining inhibitors with 5-HT receptor antagonists, particularly 5-HT6. However, dual-action BuChE inhibitors and 5-HT7 antagonists have not been studied until now. This study evaluated such compounds in an animal model, focusing on two candidates: compound 18 (BuChE IC50 = 4.75 μM; 5-HT7 Ki = 7 nM) and compound 50 (BuChE IC50 = 2.53 μM; 5-HT7 Ki = 1 nM). Compound 50 showed robust cognitive improvements, enhancing memory consolidation and acquisition, particularly in reversing scopolamine-induced deficits. In contrast, compound 18 exhibited limited or dose-dependent efficacy, potentially limiting its applicability. These findings highlight the strong potential of compound 50 for cognitive enhancement therapies and suggest it warrants further investigation.
Discovery of new dual butyrylcholinesterase (BuChE) inhibitors and 5-HT7 receptor antagonists as compounds used to treat Alzheimer's disease symptoms
de Candia M.Methodology
;Purgatorio R.;
2025-01-01
Abstract
Alzheimer's disease is a neurodegenerative condition with no effective cure, and current therapies, like donepezil, only alleviate symptoms. Research has explored cholinesterase inhibitors and strategies targeting tau protein, often combining inhibitors with 5-HT receptor antagonists, particularly 5-HT6. However, dual-action BuChE inhibitors and 5-HT7 antagonists have not been studied until now. This study evaluated such compounds in an animal model, focusing on two candidates: compound 18 (BuChE IC50 = 4.75 μM; 5-HT7 Ki = 7 nM) and compound 50 (BuChE IC50 = 2.53 μM; 5-HT7 Ki = 1 nM). Compound 50 showed robust cognitive improvements, enhancing memory consolidation and acquisition, particularly in reversing scopolamine-induced deficits. In contrast, compound 18 exhibited limited or dose-dependent efficacy, potentially limiting its applicability. These findings highlight the strong potential of compound 50 for cognitive enhancement therapies and suggest it warrants further investigation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


