Phenolic compounds contribute significantly to the nutritional and functional properties of wheat, particularly due to their antioxidant activity. In this study, a genome-wide association study was conducted to elucidate the genetic basis of total phenolic content (TPC) and antioxidant activity (AA) in a panel of 144 tetraploid wheat accessions representing diverse subspecies. The panel was evaluated under two different environments, located in Chile and Italy, to assess the influence of genotype, environment, and their interaction. Significant variability was observed for both TPC and AA, with TPC ranging from 0.26 to 0.82 mg gallic acid equivalent (GAE)/g and AA from 0.04 to 0.99 µmol Trolox equivalent (TE)/g. Substantial phenotypic variation and high broad-sense heritability were observed for both traits, underscoring the predominant genetic control. The genome-wide association study, using a mixed linear model (MLM), and the Bayesian information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) approaches identified 17 significant marker–trait associations, including quantitative trait loci on chromosomes 2B, 3A, 4B, 5A, 5B, and 6B. Notably, QTLs on chromosome 5A were co-localized for both TPC and AA, suggesting potential pleiotropic loci. Candidate genes linked to these loci included flavonol 3-sulfotransferase and peptidylprolyl isomerase, which are involved in phenylpropanoid metabolism and oxidative stress response, respectively. These findings offer valuable insights into the genetic basis of wheat phenolic traits and provide molecular targets for the development of biofortified cultivars through marker-assisted selection.

Genetic Study of Total Phenolic Content and Antioxidant Activity Traits in Tetraploid Wheat via Genome-Wide Association Mapping

Marcotuli I.;Vurro F.;Mores A.;Pasqualone A.;Colasuonno P.;Gadaleta A.
2025-01-01

Abstract

Phenolic compounds contribute significantly to the nutritional and functional properties of wheat, particularly due to their antioxidant activity. In this study, a genome-wide association study was conducted to elucidate the genetic basis of total phenolic content (TPC) and antioxidant activity (AA) in a panel of 144 tetraploid wheat accessions representing diverse subspecies. The panel was evaluated under two different environments, located in Chile and Italy, to assess the influence of genotype, environment, and their interaction. Significant variability was observed for both TPC and AA, with TPC ranging from 0.26 to 0.82 mg gallic acid equivalent (GAE)/g and AA from 0.04 to 0.99 µmol Trolox equivalent (TE)/g. Substantial phenotypic variation and high broad-sense heritability were observed for both traits, underscoring the predominant genetic control. The genome-wide association study, using a mixed linear model (MLM), and the Bayesian information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) approaches identified 17 significant marker–trait associations, including quantitative trait loci on chromosomes 2B, 3A, 4B, 5A, 5B, and 6B. Notably, QTLs on chromosome 5A were co-localized for both TPC and AA, suggesting potential pleiotropic loci. Candidate genes linked to these loci included flavonol 3-sulfotransferase and peptidylprolyl isomerase, which are involved in phenylpropanoid metabolism and oxidative stress response, respectively. These findings offer valuable insights into the genetic basis of wheat phenolic traits and provide molecular targets for the development of biofortified cultivars through marker-assisted selection.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/552396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact