Carob is a resilient plant with ecological and nutritional significance. A comprehensive study of Ceratonia siliqua leaves (CSL) was conducted to explore its chemical composition and health-promoting potential, aiming at improving the carob-crop sustainability through valorization of this untapped co-product. UHPLC-DAD-HRMS/MS quali-quantitative profiling of CSL revealed high levels of n-galloylated glucoses (129–196 mg g−1) and flavonol-glycosides (36–42 mg g−1), with siliquapyranone (39–56 mg g−1), 1,2,3,6-tetragalloylglusose (47–69 mg g−1) and myricitrin (27–33 mg g−1) as main markers. Highest bioactive content and antioxidant capacity (5.0 and 3.1 TEAC) was obtained during pods harvesting. Besides significant antioxidant potential, CSL exhibited strong-high inhibitory activity against α-glucosidase, acetylcholinesterase and butyrylcholinesterase (IC50, 0.51, 13.5 and 58.0 μg mL−1, respectively). 1,2,3,6-tetragalloylglusose and siliquapyranone are the main contributors to antioxidant and α-glucosidase inhibitory capacities. Excellent ability of extract and 1,2,3,6-tetragalloylglusose (IC50, 0.05 μM) in selectively inhibiting α-glucosidase, make them promising candidates to manage hyperglycemia with fewer side effects.

Carob (Ceratonia siliqua) leaves: A comprehensive analysis of bioactive profile and health-promoting potential of an untapped resource

Corbo, Filomena;Clodoveo, Maria Lisa;Tardugno, Roberta;
2025-01-01

Abstract

Carob is a resilient plant with ecological and nutritional significance. A comprehensive study of Ceratonia siliqua leaves (CSL) was conducted to explore its chemical composition and health-promoting potential, aiming at improving the carob-crop sustainability through valorization of this untapped co-product. UHPLC-DAD-HRMS/MS quali-quantitative profiling of CSL revealed high levels of n-galloylated glucoses (129–196 mg g−1) and flavonol-glycosides (36–42 mg g−1), with siliquapyranone (39–56 mg g−1), 1,2,3,6-tetragalloylglusose (47–69 mg g−1) and myricitrin (27–33 mg g−1) as main markers. Highest bioactive content and antioxidant capacity (5.0 and 3.1 TEAC) was obtained during pods harvesting. Besides significant antioxidant potential, CSL exhibited strong-high inhibitory activity against α-glucosidase, acetylcholinesterase and butyrylcholinesterase (IC50, 0.51, 13.5 and 58.0 μg mL−1, respectively). 1,2,3,6-tetragalloylglusose and siliquapyranone are the main contributors to antioxidant and α-glucosidase inhibitory capacities. Excellent ability of extract and 1,2,3,6-tetragalloylglusose (IC50, 0.05 μM) in selectively inhibiting α-glucosidase, make them promising candidates to manage hyperglycemia with fewer side effects.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0308814624040421-main.pdf

accesso aperto

Descrizione: Article
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/532660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact