Motivated by a quantum Zeno dynamics in a cavity quantum electrodynamics setting, we study the asymptotics of a family of symbols corresponding to a truncated momentum operator, in the semiclassical limit of vanishing Planck constant h -> 0 and large quantum number N -> infinity, with hN kept fixed. In a suitable topology, the limit is the discontinuous symbol p chi(D) (x, p) where chi(D) is the characteristic function of the classically permitted region D in phase space. A refined analysis shows that the symbol is asymptotically close to the function p chi((N))(D) (x, p), where chi((N))(D) is a smooth version of chi(D) related to the integrated Airy function. We also discuss the limit from a dynamical point of view.

The semiclassical limit of a quantum Zeno dynamics

Cunden F. D.;Facchi P.;Ligabo Marilena
2023-01-01

Abstract

Motivated by a quantum Zeno dynamics in a cavity quantum electrodynamics setting, we study the asymptotics of a family of symbols corresponding to a truncated momentum operator, in the semiclassical limit of vanishing Planck constant h -> 0 and large quantum number N -> infinity, with hN kept fixed. In a suitable topology, the limit is the discontinuous symbol p chi(D) (x, p) where chi(D) is the characteristic function of the classically permitted region D in phase space. A refined analysis shows that the symbol is asymptotically close to the function p chi((N))(D) (x, p), where chi((N))(D) is a smooth version of chi(D) related to the integrated Airy function. We also discuss the limit from a dynamical point of view.
File in questo prodotto:
File Dimensione Formato  
The semiclassical limit of a quantum Zeno dynamics.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/456088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact