The aim of this study was to investigate the effect of using chitosan nanoparticles and calcium alginate in the encapsulation of flaxseed oil on the biohydrogenation of unsaturated fatty acids and in vitro fermentation. The experiments were performed in a completely randomized design with 7 treatments. The experimental treatments included: diets without oil additive (control), diet containing 7% flaxseed oil, diet containing 14% flaxseed oil, diet containing 7% oil encapsulated with 500 ppm chitosan nanocapsules, diet containing 14% flaxseed oil encapsulated with 1000 ppm chitosan nanocapsules, diet containing 7% of flaxseed oil encapsulated with 500 ppm of calcium alginate nanocapsules, diet containing 14% flaxseed oil encapsulated with 1000 ppm calcium alginate nanocapsules. The results showed that encapsulation of flaxseed oil with calcium alginate (14%) had a significant effect on gas production (p < 0.05). The treatment containing calcium alginate (14%) increased the digestibility of dry matter compared to the control treatment, but the treatments containing chitosan caused a significant reduction (p < 0.05). The results indicated that the percentage of ruminal saturated fatty acids decreased by encapsulation of flaxseed oil with chitosan (14% and 7%). The percentage of oleic unsaturated fatty acid by encapsulating flaxseed oil with chitosan (14%) had a significant increase compared to the control treatment (p < 0.05). As a result, encapsulating flaxseed oil with chitosan (14%) reduced the unsaturated fatty acids generated during ruminal biohydrogenation.

Chitosan/Calcium–Alginate Encapsulated Flaxseed Oil on Dairy Cattle Diet: In Vitro Fermentation and Fatty Acid Biohydrogenation

Aristide Maggiolino;Jose Manuel Lorenzo
2022-01-01

Abstract

The aim of this study was to investigate the effect of using chitosan nanoparticles and calcium alginate in the encapsulation of flaxseed oil on the biohydrogenation of unsaturated fatty acids and in vitro fermentation. The experiments were performed in a completely randomized design with 7 treatments. The experimental treatments included: diets without oil additive (control), diet containing 7% flaxseed oil, diet containing 14% flaxseed oil, diet containing 7% oil encapsulated with 500 ppm chitosan nanocapsules, diet containing 14% flaxseed oil encapsulated with 1000 ppm chitosan nanocapsules, diet containing 7% of flaxseed oil encapsulated with 500 ppm of calcium alginate nanocapsules, diet containing 14% flaxseed oil encapsulated with 1000 ppm calcium alginate nanocapsules. The results showed that encapsulation of flaxseed oil with calcium alginate (14%) had a significant effect on gas production (p < 0.05). The treatment containing calcium alginate (14%) increased the digestibility of dry matter compared to the control treatment, but the treatments containing chitosan caused a significant reduction (p < 0.05). The results indicated that the percentage of ruminal saturated fatty acids decreased by encapsulation of flaxseed oil with chitosan (14% and 7%). The percentage of oleic unsaturated fatty acid by encapsulating flaxseed oil with chitosan (14%) had a significant increase compared to the control treatment (p < 0.05). As a result, encapsulating flaxseed oil with chitosan (14%) reduced the unsaturated fatty acids generated during ruminal biohydrogenation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/423197
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact