Alzheimer’s Disease (AD) is characterized by a progressive cholinergic neurotransmission imbalance, with a decrease of acetylcholinesterase (AChE) activity followed by a significant increase of butyrylcholinesterase (BChE) in the later AD stages. BChE activity is also crucial for the development of A plaques, the main hallmarks of this pathology. Moreover, systemic copper dyshomeostasis alters neurotransmission leading to AD. In the search for structures targeting both events, a set of novel 6-benzamide purine nucleosides was synthesized, differing in glycone configuration and N7/N9 linkage to the purine. Their AChE/BChE inhibitory activity and metal ion chelating properties were evaluated. Selectivity for human BChE inhibition required N9-linked 6-deoxy- -D-mannosylpurine structure, while all three tested -D-derivatives appeared as non-selective inhibitors. The N9-linked L-nucleosides were cholinesterase inhibitors except the one embodying either the acetylated sugar or the N-benzyl-protected nucleobase. These findings highlight that sugar-enriched molecular entities can tune bioactivity and selectivity against cholinesterases. In addition, selective copper chelating properties over zinc, aluminum, and iron were found for the benzyl and acetyl-protected 6-deoxy- - L-mannosyl N9-linked purine nucleosides. Computational studies highlight molecular conformations and the chelating molecular site. The first dual target compounds were disclosed with the perspective of generating drug candidates by improving water solubility.

Exploring Mannosylpurines as Copper Chelators and Cholinesterase Inhibitors with Potential for Alzheimer’s Disease

Cantore, Mariangela;de Candia, Modesto;Altomare, Cosimo D.;Colabufo, Nicola A.
;
2023-01-01

Abstract

Alzheimer’s Disease (AD) is characterized by a progressive cholinergic neurotransmission imbalance, with a decrease of acetylcholinesterase (AChE) activity followed by a significant increase of butyrylcholinesterase (BChE) in the later AD stages. BChE activity is also crucial for the development of A plaques, the main hallmarks of this pathology. Moreover, systemic copper dyshomeostasis alters neurotransmission leading to AD. In the search for structures targeting both events, a set of novel 6-benzamide purine nucleosides was synthesized, differing in glycone configuration and N7/N9 linkage to the purine. Their AChE/BChE inhibitory activity and metal ion chelating properties were evaluated. Selectivity for human BChE inhibition required N9-linked 6-deoxy- -D-mannosylpurine structure, while all three tested -D-derivatives appeared as non-selective inhibitors. The N9-linked L-nucleosides were cholinesterase inhibitors except the one embodying either the acetylated sugar or the N-benzyl-protected nucleobase. These findings highlight that sugar-enriched molecular entities can tune bioactivity and selectivity against cholinesterases. In addition, selective copper chelating properties over zinc, aluminum, and iron were found for the benzyl and acetyl-protected 6-deoxy- - L-mannosyl N9-linked purine nucleosides. Computational studies highlight molecular conformations and the chelating molecular site. The first dual target compounds were disclosed with the perspective of generating drug candidates by improving water solubility.
File in questo prodotto:
File Dimensione Formato  
pharmaceuticals-16-00054.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.03 MB
Formato Adobe PDF
5.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/415956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact