Philaenus spumarius (Linnaeus 1758, hereafter Ps) is considered one of the main insect vectors responsible for the spread of an alien biota, Xylella fastidiosa (Wells 1987, hereafter Xf), in the Salento area, Apulia region (Southern Italy). Effective management of this biological invader depends on the continuous surveillance and monitoring of its insect vector. As such, this research elicits the invasion drivers (i.e., landscape and vegetation indicators) that influence the abundance and the dynamics of this vector and, consequently, the spatial spread of this bacterium in this Italian region. For this purpose, a spatial pattern clustering methodological approach is considered. The results reveal that spatial variation and territorial differentiation may differ from zone to zone in the same invaded area, for which effective management and monitoring planning should be addressed. Further, six agro-ecosystems zones have been identified with respect to five indicators: (i) vegetation index, (ii) intensity of cultivation, (iii) cultural diversity, (iv) density of agricultural landscape elements, and (v) altitude. This paper has public implications and contributes to an understanding of how zoning of an infected area, by an alien biota, into homogenous zones may impact its effective management costs. This approach could also be applied in other countries affected or potentially affected by the phenomenon of Xf invasion.
Landscape and Vegetation Patterns Zoning Is a Methodological Tool for Management Costs Implications Due to Xylella fastidiosa Invasion
Francesco BOZZO;Vincenzo Fucilli;Stefania Geronimo;Alessandro Petrontino
2022-01-01
Abstract
Philaenus spumarius (Linnaeus 1758, hereafter Ps) is considered one of the main insect vectors responsible for the spread of an alien biota, Xylella fastidiosa (Wells 1987, hereafter Xf), in the Salento area, Apulia region (Southern Italy). Effective management of this biological invader depends on the continuous surveillance and monitoring of its insect vector. As such, this research elicits the invasion drivers (i.e., landscape and vegetation indicators) that influence the abundance and the dynamics of this vector and, consequently, the spatial spread of this bacterium in this Italian region. For this purpose, a spatial pattern clustering methodological approach is considered. The results reveal that spatial variation and territorial differentiation may differ from zone to zone in the same invaded area, for which effective management and monitoring planning should be addressed. Further, six agro-ecosystems zones have been identified with respect to five indicators: (i) vegetation index, (ii) intensity of cultivation, (iii) cultural diversity, (iv) density of agricultural landscape elements, and (v) altitude. This paper has public implications and contributes to an understanding of how zoning of an infected area, by an alien biota, into homogenous zones may impact its effective management costs. This approach could also be applied in other countries affected or potentially affected by the phenomenon of Xf invasion.File | Dimensione | Formato | |
---|---|---|---|
land-11-01105.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
5.97 MB
Formato
Adobe PDF
|
5.97 MB | Adobe PDF | Visualizza/Apri |
land-11-01105-s001.zip
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
90.91 kB
Formato
Zip File
|
90.91 kB | Zip File | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.