In the face of the clinical challenge posed by non-small cell lung cancer (NSCLC), the present need for new therapeutic approaches is genuine. Up to now, no proof existed that 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a viable target for treating this disease. Synthesis of a rationally designed library of 2,5-disubstituted furan derivatives followed by biological screening led to the discovery of 17β-HSD1 inhibitor 1, capable of fully inhibiting human NSCLC Calu-1 cell proliferation. Its pharmacological profile renders it eligible for further in vivo studies. The very high selectivity of 1 over 17β-HSD2 was investigated, revealing a rational approach for the design of selective inhibitors. 17β-HSD1 and 1 hold promise in fighting NSCLC.
17β-Hydroxysteroid Dehydrogenase Type 1 Inhibition: A Potential Treatment Option for Non-Small Cell Lung Cancer
Mangiatordi G. F.;Nicolotti O.;
2021-01-01
Abstract
In the face of the clinical challenge posed by non-small cell lung cancer (NSCLC), the present need for new therapeutic approaches is genuine. Up to now, no proof existed that 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is a viable target for treating this disease. Synthesis of a rationally designed library of 2,5-disubstituted furan derivatives followed by biological screening led to the discovery of 17β-HSD1 inhibitor 1, capable of fully inhibiting human NSCLC Calu-1 cell proliferation. Its pharmacological profile renders it eligible for further in vivo studies. The very high selectivity of 1 over 17β-HSD2 was investigated, revealing a rational approach for the design of selective inhibitors. 17β-HSD1 and 1 hold promise in fighting NSCLC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.