In this note, we prove a blow-up result for a semilinear generalized Tricomi equation with nonlinear term of derivative type, i.e., for the equation Tℓu=|∂tu|p, where Tℓ=∂t2-t2ℓΔ. Smooth solutions blow up in finite time for positive Cauchy data when the exponent p of the nonlinear term is below QQ-2, where Q= (ℓ+ 1) n+ 1 is the quasi-homogeneous dimension of the generalized Tricomi operator Tℓ. Furthermore, we get also an upper bound estimate for the lifespan.

A Blow-Up Result for a Generalized Tricomi Equation with Nonlinearity of Derivative Type

Lucente S.;Palmieri A.
2021-01-01

Abstract

In this note, we prove a blow-up result for a semilinear generalized Tricomi equation with nonlinear term of derivative type, i.e., for the equation Tℓu=|∂tu|p, where Tℓ=∂t2-t2ℓΔ. Smooth solutions blow up in finite time for positive Cauchy data when the exponent p of the nonlinear term is below QQ-2, where Q= (ℓ+ 1) n+ 1 is the quasi-homogeneous dimension of the generalized Tricomi operator Tℓ. Furthermore, we get also an upper bound estimate for the lifespan.
File in questo prodotto:
File Dimensione Formato  
Lucente S., Palmieri A. (2021 MilanJM - ArXiv version) - A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type.pdf

accesso aperto

Descrizione: versione arxiv
Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 267.48 kB
Formato Adobe PDF
267.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/374800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact