Mitochondria in neurons contribute to energy supply, the regulation of synaptic transmission, Ca2+ homeostasis, neuronal excitability, and stress adaptation. In recent years, several studies have highlighted that the neurotransmitter serotonin (5-HT) plays an important role in mitochondrial biogenesis in cortical neurons, and regulates mitochondrial activity and cellular function in cardiomyocytes. 5-HT exerts its diverse actions by binding to cell surface receptors that are classified into seven distinct families (5-HT1 to 5-HT7). Recently, it was shown that 5-HT3 and 5-HT4 receptors are located on the mitochondrial membrane and participate in the regulation of mitochondrial function. Furthermore, it was observed that activation of brain 5-HT7 receptors rescued mitochondrial dysfunction in female mice from two models of Rett syndrome, a rare neurodevelopmental disorder characterized by severe behavioral and physiological symptoms. Our Western blot analyses performed on cell-lysate and purified mitochondria isolated from neuronal cell line SH-SY5Y showed that 5-HT7 receptors are also expressed into mitochondria. Maximal binding capacity (Bmax) obtained by Scatchard analysis on purified mitochondrial membranes was 0.081 pmol/mg of 5-HT7 receptor protein. Lastly, we evaluated the effect of selective 5-HT7 receptor agonist LP-211 and antagonist (inverse agonist) SB-269970 on mitochondrial respiratory chain (MRC) cytochrome c oxidase activity on mitochondria from SH-SY5Y cells. Our findings provide the first evidence that 5-HT7 receptor is also expressed in mitochondria.

Mitochondrial membranes of human SH-SY5Y neuroblastoma cells express serotonin 5-HT7 receptor

Niso M.;Laera L.;Trisolini L.;Favia M.;Marzulli D.;Petrosillo G.;Pierri C. L.;Lacivita E.
;
Leopoldo M.
2020-01-01

Abstract

Mitochondria in neurons contribute to energy supply, the regulation of synaptic transmission, Ca2+ homeostasis, neuronal excitability, and stress adaptation. In recent years, several studies have highlighted that the neurotransmitter serotonin (5-HT) plays an important role in mitochondrial biogenesis in cortical neurons, and regulates mitochondrial activity and cellular function in cardiomyocytes. 5-HT exerts its diverse actions by binding to cell surface receptors that are classified into seven distinct families (5-HT1 to 5-HT7). Recently, it was shown that 5-HT3 and 5-HT4 receptors are located on the mitochondrial membrane and participate in the regulation of mitochondrial function. Furthermore, it was observed that activation of brain 5-HT7 receptors rescued mitochondrial dysfunction in female mice from two models of Rett syndrome, a rare neurodevelopmental disorder characterized by severe behavioral and physiological symptoms. Our Western blot analyses performed on cell-lysate and purified mitochondria isolated from neuronal cell line SH-SY5Y showed that 5-HT7 receptors are also expressed into mitochondria. Maximal binding capacity (Bmax) obtained by Scatchard analysis on purified mitochondrial membranes was 0.081 pmol/mg of 5-HT7 receptor protein. Lastly, we evaluated the effect of selective 5-HT7 receptor agonist LP-211 and antagonist (inverse agonist) SB-269970 on mitochondrial respiratory chain (MRC) cytochrome c oxidase activity on mitochondria from SH-SY5Y cells. Our findings provide the first evidence that 5-HT7 receptor is also expressed in mitochondria.
File in questo prodotto:
File Dimensione Formato  
ijms-21-09629.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 731.17 kB
Formato Adobe PDF
731.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/348982
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact