Mobile phones are currently the main targets of continuous malware attacks. Usually, new malicious code is generated conveniently changing the existing one. According to this, it becomes very useful to identify new approaches for the analysis of malware phylogeny. This paper proposes a data-aware process mining approach performing a malware dynamic analysis. The process mining is performed by using a multiperspective declarative approach allowing to model a malware family as a set of constraints (within their data attributes) among the system call traces gathered from infected applications. The models are used to detect execution patterns or other relationships among families. The obtained models can be used to verify if a checked malware is a potential member of a known malware family and its difference with respect to other malware variants of the family. The approach is implemented and applied on a dataset composed of 5648 trusted and malicious applications across 39 malware families. The obtained results show great performance in malware phylogeny generation.

Malware Phylogeny Analysis using Data-Aware Declarative Process Mining

Ardimento P.;
2020-01-01

Abstract

Mobile phones are currently the main targets of continuous malware attacks. Usually, new malicious code is generated conveniently changing the existing one. According to this, it becomes very useful to identify new approaches for the analysis of malware phylogeny. This paper proposes a data-aware process mining approach performing a malware dynamic analysis. The process mining is performed by using a multiperspective declarative approach allowing to model a malware family as a set of constraints (within their data attributes) among the system call traces gathered from infected applications. The models are used to detect execution patterns or other relationships among families. The obtained models can be used to verify if a checked malware is a potential member of a known malware family and its difference with respect to other malware variants of the family. The approach is implemented and applied on a dataset composed of 5648 trusted and malicious applications across 39 malware families. The obtained results show great performance in malware phylogeny generation.
2020
978-1-7281-4384-2
File in questo prodotto:
File Dimensione Formato  
IEEE_EAIS_2020_paper_61.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 536.09 kB
Formato Adobe PDF
536.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2020_EAIS_Security_Phylogeny.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 536.16 kB
Formato Adobe PDF
536.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/310612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact