
Malware Phylogeny Analysis using
Data-Aware Declarative Process Mining

Pasquale Ardimento
Dept. of Informatics

University of Bari Aldo Moro
Bari, Italy

pasquale.ardimento@uniba.it

Mario Luca Bernardi

“Giustino Fortunato” University
Benevento, Italy

m.bernardi@unifortunato.eu

Marta Cimitile

Unitelma Sapienza University
Rome, Italy

marta.cimitile@unitelmasapienza.it

Abstract—Mobile phones are currently the main targets of
continuous malware attacks. Usually, new malicious code is
generated conveniently changing the existing one. According to
this, it becomes very useful to identify new approaches for the
analysis of malware phylogeny. This paper proposes a data-aware
process mining approach performing a malware dynamic analy-
sis. The process mining is performed by using a multiperspective
declarative approach allowing to model a malware family as a
set of constraints (within their data attributes) among the system
call traces gathered from infected applications. The models are
used to detect execution patterns or other relationships among
families. The obtained models can be used to verify if a checked
malware is a potential member of a known malware family and
its difference with respect to other malware variants of the family.
The approach is implemented and applied on a dataset composed
of 5648 trusted and malicious applications across 39 malware
families. The obtained results show great performance in malware
phylogeny generation.

Index Terms—Malware phylogeny, Data-aware declarative
process mining, multi-perspective declare

I. INTRODUCTION

More and more often sensitive data and online services are
accessed through mobile phones. This explains the increasing
number of mobile malware attacks and their always greater
aggressivity. Continuously, new malicious code is obtained
as a variant of existing malware also with the support of
automatic tools [1]. This encourages the birth and the study of
new solutions to malware detection and malware phylogeny
analysis. In particular, malware phylogeny consists to study
the malware evolution, similarities, and relationships [2]. The
deriving advantage is a higher comprehension of the malware
useful to identify new anti-malware strategies. According to
this, in this paper, a new approach to malware phylogeny
is proposed. The main assumption is that the behavior of a
malware can be captured and modeled mining the system calls
traces generated during the execution of applications infected
with that malware. In particular, the common parts of a set of
different applications infected with a given malware family can
be used to obtain a sort of fingerprint of the malware family.
The malicious behavior model is expressed as a set of declar-
ative constraints [3] within their data conditions and is called
Data-aware System Calls Execution Fingerprint (DSEF). The
mining of the infected application code is here performed by
using the multiperspective Declare (MP-Declare) [4] miner.

MP-Declare allows discovering the application models also
considering the data conditions associated with each syscall.
This paper starts from the approach described in [5, 6, 7]
that proposes the adoption of the Declare Process Mining tool
[3] to support malware analysis and malware phylogeny. With
respect to [5], here we introduce a data-aware based process
mining technique able to capture the constraints associated
with a set of syscall traces within their data attributes. Our idea
is that the addition of data attributes analysis can improve the
malware modeling capability of the process mining technique
since malware behavior is often activated and conditioned to
the value assumed by the data associated with the syscalls.

The proposed approach is applied on a dataset composed of
39 malware families and 5468 malicious applications.

The rest of paper is organized as follows. Section 2 re-
ports a background overview on malware families, malware
phylogeny and MP-Declare language. Section 3 proposes a
discussion of related work. Section 4 describes the malware
phylogeny approach. Section 5 reports an experiment describ-
ing the application of the malware phylogeny approach on a
real dataset. The obtained results are discussed in Section 6
while in Section 7 the Threats to validity are discussed. Finally,
Section 8 gives some conclusive remarks and describes our
future work.

II. BACKGROUND

A. Malware phylogeny and malware family

We consider a malware family as a set of malware with
similar behavior and characteristics. The knowledge of the
properties of a malware family should support malware phy-
logeny defined as an estimation of the derivation relationships
between malware variety of families [2]. Example of Android
malware families are reported in the first three columns of
Table I respectively containing the family name, the number
of downloaded samples (#DS) and the number of samples
included in the experiment (#IS).

Malware is usually downloaded and installed by the de-
ceived users in different ways: the different installation types
(IT) are described in [8]. For example, possible values of IT are
repackaging (r), standalone (s), and update attack (u). Repack-
aging is when the first downloaded application is benign
and successively it is repackaged with additional malicious

Submitted to IEEE-EAIS 2020 conference.

TABLE I
A LIST OF SOME COMMON MALWARE FAMILIES.

Family #DS #IS Activating Events (AEs)
Asroot 168 129 BOOT, CALL, SMS
CruseWin 165 126 BOOT, NET
Tapsnake 166 125 BOOT, CALL, NET, SMS
Geinimi 173 125 MAIN
DroidKungFu4 180 123 BATT, BOOT, SYS
AdWo 163 122 BOOT, CALL, SMS
DroidKungFuSapp 172 121 BATT, BOOT, SYS
PjApps 154 119 BATT, BOOT, SMS
Benign 149 115 BOOT
AnserverBot 171 113 BOOT, CALL, NET
DroidKungFu2 173 112 BATT, BOOT, SYS
DroidKungFu3 179 112 BATT, BOOT, SYS
RogueSPPush 147 111 BOOT, NET, SMS
Zsone 152 109 BOOT
Opfake 158 107 MAIN
SndApps 154 104 BOOT, NET, SMS
GPSSMSSpy 149 104 BOOT
ADRD 144 101 BOOT, CALL
GingerMaster 154 100 BOOT
Gone60 128 99 BOOT, CALL, NET, SMS
FakeNetflix 143 98 BOOT, CALL, NET
KMin 155 98 BOOT
NickySpy 131 97 BOOT
DroidDreamLight 125 95 MAIN
BaseBridge 139 93 BATT, BOOT, NET, SMS
GoldDream 148 93 BOOT, MAIN, NET, SMS
jSMSHider 118 92 BOOT
DroidDream 145 90 BOOT
FakeInstaller 116 90 BOOT, CALL
Plankton 125 87 BOOT
DroidCupon 115 87 BOOT
AirPush 134 87 BATT, BOOT, SMS
YZHC 106 84 MAIN
Boxer 128 81 MAIN
HippoSMS 103 72 BOOT
zHash 92 67 MAIN
Bgserv 82 62 BOOT
DroidKungFu1 82 52 BATT, BOOT, SYS
BeanBot 82 52 BOOT, MAIN

payloads. Update attacks consist to inject malicious payloads
in the updated versions of the application. Finally, standalone
attacks are able to redirect users to download malware. We re-
strict our interest to repackaging and standalone malware since
we need the infected package to perform model extraction.
Another aspect discriminating different malware family are the
activating events (AEs). They refer to the events that activate
the malicious behaviour. AEs belongs to several broad classes
depending on the activated functionalities: BOOT, BATT, SMS,
SYS, NET, CALL.

The abbreviation BOOT refers to the BOOT COMPLETED
event. BATT is then used to describe events representing
a specific state of the battery (i.e., battery low,
battery ok, action power connected, action
power disconnected, batter change action).
Moreover, SMS refers to sms received event. The
abbreviation SYS includes user present, input
method changed, sim full. net corresponds to
connectivity changed or pick wifi work
acitvation events. Finally, CALL event consists of new
outgoing call or phone state.

B. Multi-perspective Declare

The code mining is performed in this study using a tool
called MP-Declare [4, 9]. It is the multi-perspective version of
the Declare tool introduced in [10]. The Declare modeling lan-
guage [10, 11] represents each process as a set of constraints
that must be satisfied during its execution. Specifically, all the
sequences of activities that do not violate the constraints are
allowed. Moreover, each constraint can be seen as a concrete
instantiation of a set of templates represented as a class of
properties. From the templates, the constraints inherit both
their semantics and graphical representation. Declare uses LTL
semantics [12] because it ensures that the processes can be ver-
ifiable and executable throughout a finite number of traces. The
implementation of Declare-based process mining is obtained
throughout the tools described in [13]. MP-Declare [4, 9] adds
to Declare a multi-perspective vision using a Metric First-
Order Linear Temporal Logic (MFOTL) that allows ensuring
a new time and data perspective.

To understand the MFOTL we have to introduce the defini-
tion of event payload. Let us consider, for example, the activity
receive call(C) executed at the timestamp ts. This activity
assigns to the attribute caller the value Simon representing
the payload of C. Considering, for example, that activities
receive call and filter call are related by a response constraint,
it corresponds to the fact that the activity receive call is
always eventually followed by activity filter call. Additionally,
a timed semantics is implied in the above model thought some
additional conditions on the data: they can be an activation
condition φa and a correlation condition φc. The activation
condition can be seen as a relation among the variables
(event logs global attributes) that must be valid to ensure the
activation (when the activation condition is not verified, the
constraint is not activated). Further details, in particular on the
semantics of MP-Declare templates, are described in section
2.2. of [9].

This study uses the MP-Declare tool and formalization [9]
to discover the constraints (within their attributes) useful to
represent the behavior of a malicious application.

III. RELATED WORK

The topic of malware phylogeny is debated in several stud-
ies in the last years. Authors in [14], proposes a method based
on a set of features (called n-perms) useful to match different
code permutations obtaining a malware tree description. The
obtained models are suitable to support malware discovery,
identify malware variants and verify the possible inconsis-
tencies in malware naming. Differently, from our phylogeny
approach, the method is static while malicious applications
are never executed. Moreover, its robustness is quite reduced
in case of code modifications that cannot be represented as
permutations. Conversely, the proposed phylogeny approach is
less sensitive to static code transformations while it is based
on system call captured during malware execution. Another
approach to malware evolution is reported in [15]. Authors
define malware evolution relations using derivation graphs to
describe path patterns. A huge limitation of this framework

(a) An excerpt of a syscalls execution trace

(b) An MP-declare process to which the trace in (a) is conformant

Fig. 1. A small running example.

is that it is unable to model automatically generated source
code (a significant number of malware is generated using
automatic tools). Differently, our method is suitable to analyze
also automatically generated code. A taxonomy of malware is
also obtained in [16]. Here authors explore the similarities
and differences between malware variants using clustering
algorithms to manually obtain the malware taxonomy. The
limitation of this approach is the absence of a reference
phylogeny model. A malware shellcode phylogeny study is
also proposed in [17]. The method is mainly based on a data-
centric approach allowing to perform packets inspections to
automatically identify and evaluate the shellcode similarity.
With respect to our approach, this method is more focused
on malware behavior analysis. An approach based on the
analysis of logs is reported in [18, 19]. Here authors capture
possible modifications among application running obtaining
a phylogeny tree. In this study, authors execute traces at
APIs level. For this reason, differently from our phylogeny
approach, they are affected by API version. Finally, the pro-
posed approach represents an evolution of [5]. In particular,
the approach proposed in [5] is here extended and improved
with the addition of a data-aware perspective.

IV. APPROACH

This study proposes an approach consisting of three main
steps: i) compute of the DSEFs of each analyzed malware
families; ii) evaluate the similarities among the DSEFs; iii)
perform a clustering analysis to obtain a phylogeny model for
the analyzed families.

In the first step, for each considered malware family, we
mine the system call traces of a set of infected Android
applications when an AE (the list of considered AE is reported
in Table I) has occurred. The mining is performed by using
a data-aware process mining technique and the obtained con-
straints (within their attributes) are used to generate the models
(or fingerprints) of the behavior of a malware family infecting
all the mined applications. The malware SEFs of different
families are then compared and their similarities are evaluated.
Finally, clustering analysis is performed to study malware
phylogeny and classify new malware basing on its membership
to a given family. Starting from the logs captured during the
execution of the infected applications, the proposed approach
is able to analyze the system call traces to characterize the
discovered malware behavior.

In the following, the three steps are further detailed.

A. Compute the SEFs of a malware family

The DSEF computation process is summarized in Figure 2.
Given a set of applications (APKs) infected with a malware
family M, the corresponding DSEF is built.

The DSEF construction for a malware family requires a
generation process involving the usage of an android device
(a real device or a sandbox) used to generate syscall traces
from one or more application packages (APKs).

The DSEF computation process as provided in Figure 2
takes as input the considered APK (infected with the malware
family M) and extract the syscalls traces generated in response
to an AE (we are assuming that the malicious behavior is
usually triggered by a set of activating events [5, 20]). All the
APKs of Table I are executed on an emulator of the Android
device 1. For each APK, all the corresponding AE (Table I)
are tested one for time (each event is sent more than once to
the APK in order to have a huge number of samples).

The generated traces have a textual format. In particular,
each APK is installed and started and during its running, a
system event is sent to the emulator. The generated system
calls are then captured until the APK state return to be stable,
and the APK running is stopped. After each stop, the emulator
is cleaned and restarted. The APK is newly installed to ensure
that each run has similar conditions. The scanning of all the
AE is obtained using some ad hoc shell scripts. Successively,
the CSV generation phase is started. The collected syscall
traces are now converted from text to CSV format in order to
be processed by the MP-Declare Miner [9]. In the conversion
step, all the useless information is filtered out while it is
retained information like session attributes, application id,
system call occurrence (its timestamp, the id of its requesting
process and the ordered list of arguments). This information
allows generating, for each log event, the event payload. The
data correlation is performed by using a reference-based corre-
lation approach [5] using a correlation function that considers
both the process id and the event timestamps attributes. The
events payloads are used by subsequent process mining step
to infer activation and correlation conditions for activities. The
set of DSEF computation activities starts by taking the CSV
logs for each malware family and builds the corresponding
DSEF. The CSV logs associated with each event are filtered
using the Gaussian distribution of the sizes of the logs (all
logs outside the 80th percentiles are filtered out having a high
probability to be incorrect).

The remaining logs are processed by the MP-Declare tool
obtaining the model for each system event. In this step, we
are assuming that each model (DSEF of the malware family)
is a set of constraints (and their attributes) characterizing the
behavior of the shared malware part while the parts that are
specific to the various applications (they are different from
trace to trace) are discarded.
To further explain the concepts of DSEF, we introduce a
running example synthesized in Figure 1. Figure 1-(a) reports
an excerpt of a syscall execution trace obtained from an

1https://developer.android.com/studio/run/emulator.html

Android application. A possible process to which this trace
is conformant is then reported in Figure 1-(b). The syscall
execution events reported in Figure 1-(a) are generated by
an application able to opens a file, write some data and
close it. The figures show that each syscall in the execution
trace is associated with an activity in the process that defines
the event payload structure in terms of attributes and their
types. During the syscall trace parsing, events and the values
of their attributes are created and added to the process log
used for a subsequent mining step. From the syscall logs,
a behavioral model called Data-aware Syscalls Execution
Fingerprint (DSEF) is then extracted. The DSEF is obtained
using the MP-Declare notation [9] in order to represent corre-
lation conditions among syscall taking also into account data
parameters obtained from the application execution traces. In
the following we introduce the definitions of the MP-Declare
model and of DSEF of a malware family.

Definition 1 (MP-Declare model). The MP-Declare model
(MPD) for a set of system call traces T is obtained as:

MPD = {C1, . . . , Cn}

Ch = (SA, ST , P) is a unary or binary constraint specifying
a condition P. The constraints are satisfied if P holds over
traces in T :

• on the occurrences of each system calls SA, for unary
constraints;

• on each couple (SA, ST) of activating and target system
calls, for binary constraints.

Definition 2 (DSEF of a malware family M). The DSEF of
a malware family M is defined as:

DSEF (M) = {MPDM1
, . . . ,MPDMn

}

where:

• MPDMj
is the MP-Declare model for event j mined

from the set of traces {tj1, . . . , tjm}
• tji is the execution trace generated by the i-th application

of the set A in response to the j-th system event, with
i ∈ [1,m], j ∈ [1, n];

Notice that in the above definition we use A to describe the
set of m applications infected with M while n is the number
of system events sent to each application.

Basing on the above definition, the DSEF of a malware
family M is computed and modeled as the shared malicious
behavior of the entire set of applications infected by M .
According to this, it is necessary a single run for each
application included in A to extract the set of constraints char-
acterizing the shared malicious behavior of all the applications.
Specifically, on the base of the results of [5] we can assume
that the common parts of a set of different applications infected
with the malware family M determine the unique fingerprint
(expressed as a set of constraints) of M .

Fig. 2. Computing the DSEF of a Malware family M.

ADRD
AdWo

AirPush
AnserverBot

Asroot
BaseBridge

BeanBot
Benign
Bgserv
Boxer

CruseWin
DroidDream
DroidCupon

DroidDreamLight
DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4

DroidKungFuSapp
FakeNetflix

FakeInstaller
GPSSMSSpy

Geinimi
GingerMaster

GoldDream
Gone60

HippoSMS
KMin

NickySpy
Opfake

Plankton
PjApps

RogueSPPush
SndApps

Tapsnake
YZHC
Zsone

jSMSHider
zHash

 A
D

R
D

 A
d
W

o

 A
ir
P

u
s
h

 A
n
s
e
rv

e
rB

o
t

 A
s
ro

o
t

 B
a
s
e
B

ri
d
g
e

 B
e
a
n
B

o
t

 B
e
n
ig

n

 B
g
s
e
rv

 B
o
xe

r

 C
ru

s
e
W

in

 D
ro

id
D

re
a
m

 D
ro

id
C

u
p
o
n

 D
ro

id
D

re
a
m

L
ig

h
t

 D
ro

id
K

u
n
g
F

u
1

 D
ro

id
K

u
n
g
F

u
2

 D
ro

id
K

u
n
g
F

u
3

 D
ro

id
K

u
n
g
F

u
4

 D
ro

id
K

u
n
g
F

u
S

a
p
p

 F
a
k
e
N

e
tf
lix

 F
a
k
e
In

s
ta

lle
r

 G
P

S
S

M
S

S
p
y

 G
e
in

im
i

 G
in

g
e
rM

a
s
te

r

 G
o
ld

D
re

a
m

 G
o
n
e
6
0

 H
ip

p
o
S

M
S

 K
M

in

 N
ic

k
y
S

p
y

 O
p
fa

k
e

 P
la

n
k
to

n

 P
jA

p
p
s

 R
o
g
u
e
S

P
P

u
s
h

 S
n
d
A

p
p
s

 T
a
p
s
n
a
k
e

 Y
Z

H
C

 Z
s
o
n
e

 j
S

M
S

H
id

e
r

 z
H

a
s
h

Fig. 3. The dissimilarity matrix obtained evaluating the distances among MP-declare models on the dataset.

B. Evaluate the similarities among the DSEFs

To evaluate the similarities among malware families we
calculate the distance among their SEFs. To this aim, we
introduce the concept of distance between two MP-Declare
models MPDi and MPDj.

Definition 3 (Distance between two MP-Declare models).
We define the distance σ(MPDi,MPDj) between two
MP-Declare models MPDi and MPDj as:

σ(MPDi,MPDj) =

∑k
h=1 σ(Cih, Cjh)

|Ei|+ |Ej |+
∑k

h=1 σ(Cih, Cjh)

where:

• Cih = (T, Pih) and Cjh = (T, Pjh) are the k constraints
with the same template present in both models and
σ(Cih, Cjh) is the tree edit distance among the expression
trees of their predicates (Pih and Pjh);

• Ei and Ej are the sets of constraints present, respectively,
only in model MPDi and in model MPDj;

The distance between the expression trees Pih and Pjh is
computed as described in [21] and normalized as described in
[22].

According to the above definition, we can observe that
the distance between models having the same constraints and
correlation conditions is equal to zero while the distance
between models having different constraints or completely
different correlation conditions is equals to one (it is the
maximum distance).

Similarly, the distance between two DSEFs A and B, is
computed as the average of the distances between the models
A and B of all the considered AE:

σ(DSEFA, DSEFB) =

∑n
i=1 σ(MPDAi ,MPDBi)

n

Starting from the DSEFs distance definition, a dissimilarity
matrix is computed. In the matrix, each entry i, j reports the
dissimilarity between the DSEF model of the family i and that
of the family j.

C. Clustering Analysis

This step is aimed to recover a phylogeny model using the
Hierarchical Agglomerative Clustering (HAC) algorithm re-
ported in [23] on the DSE dissimilarity matrix. HAC algorithm
is very used for the construction of the phylogeny model both
in security and biology domains. It provides impressive results
with the best trade-off with respect to performances. However,
the limit of the obtained phylogeny model is that it is unable to
represent multiple inheritances: the lineage is always a linear
path. As a consequence, if a malware derives from more than
one family, the model exclusively identifies the closest parent.

V. EXPERIMENT DESCRIPTION

A. Dataset description

We assess our approach on a dataset built on a large set
of the 39 infected applications families reported in Table I.
The dataset includes samples from Drebin [5] and Genoma
Dataset [26] and other specifically collected for this work.
The dataset reliability is ensured by submitting the infected
application to well-known anti-malware services [2]. Using
several different anti-malware on the entire dataset, all the
samples not detected as infected from at least ten different
anti-malware were discarded. Table I reports, in the third
column, the samples included in our study after quality checks.
Specifically, for each family, the table reports the number of
samples downloaded from the internet (#DS) and the number
of samples included in the study (#IS) that pass the filtering
step. As the table highlights, the initial downloaded dataset
is composed of few more than 5,000 infected samples and,
from these, almost 4,000 samples are selected to be used in
our experiment. Each selected sample consists of an infected
android package (APK) that can be installed on an Android
smartphone. This allows to perform all the sequences of
activities that are described in IV (i.e., syscall trace setting,
SEF models generation, distance among the DSEFs evaluation
and the phylogeny model recovery).

B. Experiment setting

The experiment consists in building the dendrogram of the
39 families of Table I. The infected applications are executed
and traces are collected and analyzed as specified in the
process of Figure 2 to build the process models for each
malware family. The models are used to build a dissimilarity
matrix on which to perform the hierarchical clustering step
to derive a dendrogram showing the relationships among the
considered families.

VI. DISCUSSION OF RESULTS

The adoption of the agglomerative clustering applied to the
dissimilarity matrix of Figure 3 resulted in the dendrogram
of Figure 4 that groups together the 39 malware families
under study for the behavioural similarity of the syscall they
execute. The Figure 4 groups the cluster of families having
stronger relationships. The families BaseBridge, ADRD and
RogueSPPush show a very high membership degree. This sug-
gests that there is a direct lineage among these three malware
families. This is also true for the families Zsone, YZHC and
HippoSMS since they exhibit quite similar behaviour. Another
almost isolated cluster in terms of behavioural similarity
is the one made up by DroidDream, DroidDreamLight and
GoldDream. Moreover, these families have very low similarity
to other families and, at the same time, the other families have
negligible levels of similarity to them. Another group that
exhibits strong membership levels is the one comprised by
DroidKungFu families, Plakton and Opfake: this suggests that
the DroidKungFu variants, along with Opfake and Plankton,
are very close and hence have common roots. This group also
confirms the well-known lineage among the six DroidKungFu
versions (this strong heritage is confirmed by several works
[8], [12], [15]). Looking at the dendrogram it can also be
seen that there is also a strong relationships among Geimini,
Plakton and Opfake families. This confirms what reported in
several studies [24]: infact the use of network resources to steal
sensitive information that avoids sending SMS is a common
behavior of both Geinimi and Plankton payloads.

VII. THREATS TO VALIDITY

Construct validity. Performing outliers analysis allowed us
to reveal that some traces captured are incomplete. An example
is provided by a situation where an application is shut down
due to illegal behavior and a trace, even if incomplete, is cap-
tured. The problem lies in the way the automatic script works,
not considering what happens during the capturing time. The
script starts to capture the trace when a system event occurs
(i.e., when it is sent by the sandbox to the application) and
stops to capture when a new stable state is reached. Another
threat could be represented by traces captured from malware
applications that do not trigger malicious behavior in response
to some system events. However, this kind of issue is well
addressed by our approach by an effective detection during the
training process looking at the distribution of distances among
test and trusted applications. For example, our approaches

Fig. 4. The dendrogram showing the lineage relationships among families based on the behavior similarity of the invoked system calls.

recognize that DroidKungFu malware is triggering the ma-
licious behavior for BOOT COMPLETED, BATTERY LOW
and INPUT MEDIA CHANGED events allowing an effective
detection. Anyway, for malware not triggering malicious be-
haviour for any of the system events, our approach is not able
to perform well but this eventuality can be revealed during the
model creation step.

The way the dataset is obtained could represent a threat. The
assumption is that the considered applications are malicious on
the base of the response of some antivirus software that does
not provide any assurance. To reduce the number of false pos-
itives, i.e. legitimate applications identified as illegitimate, a
combination of several anti-malware was used. We established
that an application had to be considered as infected only when
at least five different anti-malware recognized it for what it is.

External validity. The proposed approach has been evaluated
on a very large number of applications, 5648 applications
belonging to 39 malware families. However, to generalize
the results, it is desirable to increase both the number of
applications and the number of malware families.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a process mining approach aimed
at studying android malware phylogeny. The MP-declare
language is used to mine a data-aware declarative process
from the system calls traces of the malware applications.
The process models represents the malware family fingerprint
used to detect behaviour similarity. Specifically, the malware
families similarities and the corresponding malware variants
characterization are identified using a hierarchical clustering
algorithm on the base of the distances between the mined
models. The proposed approach is tested on more than 5,000
infected applications involving 39 malware families. The re-
sults highlight that the clustering approach is effective at
comparing families basing on the similarity of their behavior
executed by the malicious application at run-time. We plan to
perform a wider assessment increasing the size of the dataset
and the considered platforms.

REFERENCES

[1] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred:
Feature hashing malware for scalable triage and semantic
analysis,” in Proceedings of the 18th ACM Conference on

Computer and Communications Security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 309–320.

[2] M. Hayes, A. Walenstein, and A. Lakhotia, “Evaluation
of malware phylogeny modelling systems using auto-
mated variant generation,” Journal in Computer Virology,
vol. 5, no. 4, pp. 335–343, 2008.

[3] W. van der Aalst, Process Mining: Discovery, Con-
formance and Enhancement of Business Processes.
Springer Berlin Heidelberg, 2011.

[4] V. Leno, M. Dumas, and F. M. Maggi, “Correlating
activation and target conditions in data-aware declarative
process discovery,” in Business Process Management,
M. Weske, M. Montali, I. Weber, and J. vom Brocke,
Eds. Cham: Springer International Publishing, 2018,
pp. 176–193.

[5] M. L. Bernardi, M. Cimitile, D. Distante, F. Martinelli,
and F. Mercaldo, “Dynamic malware detection and phy-
logeny analysis using process mining,” International
Journal of Information Security, vol. 18, no. 3, pp. 257–
284, Jun 2019.

[6] G. Acampora, M. L. Bernardi, M. Cimitile, G. Tortora,
and A. Vitiello, “A fuzzy clustering-based approach to
study malware phylogeny,” in 2018 IEEE International
Conference on Fuzzy Systems, FUZZ-IEEE 2018, Rio de
Janeiro, Brazil, July 8-13, 2018. IEEE, 2018, pp. 1–8.

[7] A. Burattin, M. Cimitile, and F. M. Maggi, “Lights, cam-
era, action! business process movies for online process
discovery,” in Business Process Management Workshops,
F. Fournier and J. Mendling, Eds. Cham: Springer
International Publishing, 2015, pp. 408–419.

[8] X. Jiang and Y. Zhou, Android Malware. Springer
Publishing Company, Incorporated, 2013.

[9] V. Leno, M. Dumas, F. M. Maggi, M. L. Rosa, and
A. Polyvyanyy, “Automated discovery of declarative pro-
cess models with correlated data conditions,” Information
Systems, vol. 89, p. 101482, 2020.

[10] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst,
“Declare: Full support for loosely-structured processes,”
in EDOC 2007, 2007, pp. 287–300.

[11] M. L. Bernardi, M. Cimitile, C. Di Francescomarino,
and F. M. Maggi, “Using discriminative rule mining
to discover declarative process models with non-atomic
activities,” in Rules on the Web. From Theory to Applica-
tions, A. Bikakis, P. Fodor, and D. Roman, Eds. Cham:
Springer International Publishing, 2014, pp. 281–295.

[12] M. L. Bernardi, M. Cimitile, C. D. Francescomarino,
and F. M. Maggi, “Using discriminative rule mining
to discover declarative process models with non-atomic
activities,” in Rules on the Web. From Theory to Appli-
cations - 8th International Symposium, RuleML, Prague,
Czech Republic, August. Proceedings, 2014, pp. 281–
295.

[13] F. M. Maggi, “Declarative process mining with the
declare component of prom,” in Proceedings of the BPM
Demo sessions 2013, Beijing, China, August 26-30, 2013,
2013.

[14] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida,
“Malware phylogeny generation using permutations of
code,” Journal in Computer Virology, vol. 1, no. 1-2, pp.
13–23, 2005.

[15] A. Walenstein and A. Lakhotia, “A transformation-based
model of malware derivation,” in Malicious and Un-
wanted Software (MALWARE), 2012 7th International
Conference on, Oct 2012, pp. 17–25.

[16] E. Carrera and G. Erdélyi, “Digital genome mapping–
advanced binary malware analysis,” in Virus bulletin
conference, vol. 11, 2004.

[17] J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M.
Voelker, “Finding diversity in remote code injection
exploits,” in Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’06.
New York, NY, USA: ACM, 2006, pp. 53–64.

[18] W. M. Khoo and P. Lió, “Unity in diversity:
Phylogenetic-inspired techniques for reverse engineering
and detection of malware families,” in SysSec Workshop
(SysSec), 2011 First. IEEE, 2011, pp. 3–10.

[19] B. Fazzinga, S. Flesca, F. Furfaro, and L. Pontieri,
“Online and offline classification of traces of event logs
on the basis of security risks,” J. Intell. Inf. Syst., vol. 50,
no. 1, pp. 195–230, 2018.

[20] G. Meng, R. Feng, G. Bai, K. Chen, and Y. Liu, “Droide-
cho: an in-depth dissection of malicious behaviors in
android applications,” Cybersecurity, vol. 1, pp. 1–17,
2018.

[21] M. Pawlik and N. Augsten, “Tree edit distance: Robust
and memory-efficient,” Inf. Syst., vol. 56, pp. 157–173,
2016.

[22] C. Z. Yujian LI, “A metric normalization of tree edit
distance,” Frontiers of Computer Science, vol. 5, no. 1,
p. 119, 2011.

[23] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data cluster-
ing: A review,” ACM Comput. Surv., vol. 31, no. 3, pp.
264–323, Sep. 1999.

[24] M. Salehi, M. Amini, and B. Crispo, “Detecting mali-
cious applications using system services request behav-
ior,” in Proceedings of the 16th EAI International Con-
ference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, ser. MobiQuitous ’19. New
York, NY, USA: Association for Computing Machinery,
2019, p. 200–209.

