P-Glycoprotein is a well-known membrane transporter responsible for the efflux of an ample spectrum of anticancer drugs. Its relevance in the management of cancer chemotherapy is increased in view of its high expression in cancer stem cells, a population of cancer cells with strong tumor-promoting ability. In the present study, a series of compounds were synthesized through structure modulation of [4′-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylmethyl)biphenyl-4-ol] (MC70), modifying the phenolic group of the lead compound. Among them, compound 5b emerged for its activity against the transporter (EC50 = 15 nM) and was capable of restoring doxorubicin antiproliferative activity at nontoxic concentration. Its behavior was rationalized through a molecular modeling study consisting of a well-tempered metadynamics simulation, which allowed one to identify the most favorable binding pose, and of a subsequent molecular dynamics run, which indicated a peculiar effect of the compound on the motion pattern of the transporter.

Design, Biological Evaluation and Molecular Modelling of Tetrahydroisoquinoline Derivatives: Discovery of A Potent P-glycoprotein Ligand Overcoming Multi-Drug Resistance in Cancer Stem Cells.

Contino M.
;
Perrone M. G.;Giampietro R.;Leonetti F.;Colabufo N. A.;
2019-01-01

Abstract

P-Glycoprotein is a well-known membrane transporter responsible for the efflux of an ample spectrum of anticancer drugs. Its relevance in the management of cancer chemotherapy is increased in view of its high expression in cancer stem cells, a population of cancer cells with strong tumor-promoting ability. In the present study, a series of compounds were synthesized through structure modulation of [4′-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-ylmethyl)biphenyl-4-ol] (MC70), modifying the phenolic group of the lead compound. Among them, compound 5b emerged for its activity against the transporter (EC50 = 15 nM) and was capable of restoring doxorubicin antiproliferative activity at nontoxic concentration. Its behavior was rationalized through a molecular modeling study consisting of a well-tempered metadynamics simulation, which allowed one to identify the most favorable binding pose, and of a subsequent molecular dynamics run, which indicated a peculiar effect of the compound on the motion pattern of the transporter.
File in questo prodotto:
File Dimensione Formato  
acs.jmedchem.8b01655.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.8 MB
Formato Adobe PDF
8.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
JMC_text.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/227146
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact