Copper is an essential trace element for the human body since it is a cofactor of several enzymes and proteins and plays a pivotal role in several biological functions (e.g., respiration, protection from oxidative damage, iron metabolism, etc.), also including the central nervous system development and functioning (e.g., synthesis of neurotransmitters, myelination, activation of neuropeptides, etc.). Therefore, copper dysmetabolism is associated with different toxic effects, mainly represented by oxidative stress, and it has been reported in many neurodegenerative disorders, such as Wilson's disease, Menkes disease, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This paper shows a detailed report of how copper is involved in the pathophysiology of these diseases. Moreover, a hint on novel therapeutic approaches based on restoring copper homeostasis through metal chelators will be pointed out.
The Pivotal Role of Copper in Neurodegeneration: A New Strategy for the Therapy of Neurodegenerative Disorders
Giampietro, Roberta;Spinelli, Francesco;Contino, Marialessandra
;Colabufo, Nicola Antonio
2018-01-01
Abstract
Copper is an essential trace element for the human body since it is a cofactor of several enzymes and proteins and plays a pivotal role in several biological functions (e.g., respiration, protection from oxidative damage, iron metabolism, etc.), also including the central nervous system development and functioning (e.g., synthesis of neurotransmitters, myelination, activation of neuropeptides, etc.). Therefore, copper dysmetabolism is associated with different toxic effects, mainly represented by oxidative stress, and it has been reported in many neurodegenerative disorders, such as Wilson's disease, Menkes disease, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This paper shows a detailed report of how copper is involved in the pathophysiology of these diseases. Moreover, a hint on novel therapeutic approaches based on restoring copper homeostasis through metal chelators will be pointed out.File | Dimensione | Formato | |
---|---|---|---|
Molecular Pharmaceutics.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.73 MB
Formato
Adobe PDF
|
2.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Mol_Pharmac_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.