The free energy at zero temperature of Coulomb gas systems in generic dimension is considered as a function of a volume constraint. The transition between the ‘pulled’ and the ‘pushed’ phases is characterised as a third-order phase transition, in all dimensions and for a rather large class of isotropic potentials. This suggests that the critical behaviour of the free energy at the ‘pulled-to-pushed’ transition may be universal, i.e. to some extent independent of the dimension and the details of the pairwise interaction.
Universality of the third-order phase transition in the constrained Coulomb gas
Cunden, Fabio Deelan;FACCHI, PAOLO;LIGABO', MARILENA;
2017-01-01
Abstract
The free energy at zero temperature of Coulomb gas systems in generic dimension is considered as a function of a volume constraint. The transition between the ‘pulled’ and the ‘pushed’ phases is characterised as a third-order phase transition, in all dimensions and for a rather large class of isotropic potentials. This suggests that the critical behaviour of the free energy at the ‘pulled-to-pushed’ transition may be universal, i.e. to some extent independent of the dimension and the details of the pairwise interaction.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
145 coulomb3.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
4.49 MB
Formato
Adobe PDF
|
4.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.