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Abstract. The free energy at zero temperature of Coulomb gas systems 
in generic dimension is considered as a function of a volume constraint. The 
transition between the ‘pulled’ and the ‘pushed’ phases is characterised as a 
third-order phase transition, in all dimensions and for a rather large class of 
isotropic potentials. This suggests that the critical behaviour of the free energy 
at the ‘pulled-to-pushed’ transition may be universal, i.e. to some extent 
independent of the dimension and the details of the pairwise interaction.
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1. Introduction

In this paper, we are interested in some aspects of the mean field approximation in 
the statistical mechanics of systems with long-range interactions. For these systems, it 
is possible to characterise the ground state in the thermodynamic limit and compute 
the (free) energy at zero temperature. In the simultaneous limit of large number of 
particles and zero temperature, the system typically concentrates in a bounded region 
Γ ⊂ Rn and the free energy per particle attains a finite value. In presence of volume 
constraints—i.e. if the system is forced within a specified region of space—the ground 
state and the free energy may be altered. Since phase transitions are associated with 
the breakdown of the analyticity of thermodynamic potentials, it is legitimate to ask 
whether the dependence of the free energy on a volume constraint is analytic or not. If 
not, is it possible to establish what the regularity of the free energy—i.e. the order of 
the phase transition—is?

Suppose, for instance, that one constrains the system to be completely contained 
in a certain region, say a ball BR ⊂ Rn of radius R  >  0. If R is large enough so that 
Γ ⊂ BR, the constraint is ineffective (pulled phase) and the free energy does not change. 
On the other hand, if R is so small that Γ ̸⊂ BR, then the equilibrium configuration of 
the system changes (pushed phase) and the free energy increases. It is clear that there 
exists a critical radius R⋆ that separates the two phases; for R > R⋆ the system is in 
the pulled phase; for R < R⋆ the system is in a pushed phase. In order to go beyond 
this qualitative picture, sketched in figure 1, it would be desirable to assign a thermo-
dynamic meaning to this ‘pulled-to-pushed’ phase transition and compute its order.
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Examples of this transition abound in the physics literature of particles interacting 
via logarithmic potential (log-gas) in dimension n  =  1 and n  =  2. These systems are 
related to the eigenvalue statistics of unitarily invariant random matrix models [33] 
(see section 2). In those examples, a thermodynamic potential typically turns out to 
have a discontinuity in the third derivative at the critical value R⋆. The conclusion is 
that the ‘pulled-to-pushed’ transition is a third-order phase transition (in the sense of 
Ehrenfest).

Perhaps, the most popular third-order transitions are the so called Gross–Witten–
Wadia [22, 40] and Douglas–Kazakov [14] large-N phase transitions. In both cases, 
the authors realised that even the simplest integrals involving the unitary group were 
non-analytic in the coupling constant. In particular, at the critical value of the cou-
pling constant separating the weak coupling and the strong coupling phases, the free 
energy has a jump in the third derivative. These models are naturally mapped onto 
the statistical physics of log-gases, and the strong-to-weak coupling transition of lattice 
gauge theories can be translated as a pulled-to-pushed transition for classical particles. 
Several other third-order phase transitions have been discovered over the last decade 
in many physics problems related at various levels to random matrices, such as the 
distribution of the maximum height of non-intersecting Brownian excursions [19, 38], 
conductance and shot noise in chaotic cavities [7, 10, 39], Rényi entanglement entropy 
of bipartite random pure states [13, 17, 35], wireless telecommunication [24], complex-
ity of spin glass landscapes [20], and discrete log-gases related to random tilings [6] (see 
the review [31] and references therein for more examples and a detailed discussion).

Based on the available evidence so far, the natural question that arises is: to what 
extent is the third-order pulled-to-pushed phase transition universal? In other words, 
what are the ingredients—dimension, type of interactions, properties of the confining 
potential, etc—that are necessary to induce this type of transition? In a recent work 
[8], three of us suggested that the order of the phase transition should be related to the 
regularity of the equilibrium measure as a function of the external constraint. In this 
work, we elaborate further on this idea. The prominent role played by log-gases in R or 
R2 in the literature on the topic might lead to believe that the appearance of such weak 
transitions must be inextricably linked to this specific type of pairwise interaction and/
or to low dimensions. Yet, we show here that this is not the case.

More precisely, consider a system of N classical charged particles in Rn. The par-
ticles interact via the d-dimensional Coulomb potential Φd(x), the free space Green’s 
function for −∆ in dimension d (see equation (14) below). Notice that the Coulomb 
interaction is repulsive and long-range. To ensure stability in the absence of con-
straints, the particles are subject to an isotropic confining potential V(x) which may be 
generated, e.g. by a fixed neutralising background of opposite total charge  −N (this is 
related to the celebrated jellium model of Wigner). Here we consider the natural case 
n  =  d, i.e. d-dimensional Coulomb gases in Rd. These systems have recently received 
much attention (see, for instance, the works of Chafaï, Gozlan and Zitt [4], Rougerie 
and Serfaty [37] and Leblé and Serfaty [26]).

For these Coulomb gas models, we establish that, if the confining potential V(x) 
is radially symmetric, a constraint on the volume available to the system induces a 
third-order phase transition, irrespective of the dimension and under mild assumptions 
on V(x). Furthermore, a general formula for the excess free energy in all dimensions is 

https://doi.org/10.1088/1742-5468/aa690c
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also derived (see equation (31) below). This third-order transition was established by an 
explicit computation in a previous work [9] for the jellium model in d  =  2 (see also [2, 
23]). In this paper, we make the most of the isotropy assumption and the basic proper-
ties of the d-dimensional Coulomb interaction in Rd to reduce the many-body problem 
in dimension d to an integrable one-dimensional system.

The paper is organised as follows. In the next section, we review two examples of 
third-order phase transitions in random matrix theory. Then in section 3 we define the 
model and its thermodynamic limit, and we present and discuss the main result. In 
section 4 we derive the main formula on the large deviation functions. As an illustra-
tive example, in section 5 we present in details explicit formulae for the quadratic case, 
related to random matrices and the jellium model. The final section is a summary with 
a pointer to open problems.

2. Examples of third-order phase transitions for log-gases

Third-order phase transitions have been observed in one-dimensional and two-dimensional 
systems with logarithmic repulsion, i.e. for eigenvalues of unitarily invariant matrix 
models. A rather extensive discussion for Hermitian models is contained in [31]. In this 
section we discuss two paradigmatic examples of random matrices [15, 21, 33].

Figure 1. Illustration of the pulled-to-pushed transition for a constrained gas. At 
equilibrium, the gas is concentrated in a region Γ (here the disk within the red 
dotted line). Right: for R > R⋆ the constraint (solid blue line) is ineffective, and 
the free energy is constant. Left: when R < R⋆, the free energy increases as the gas 
gets more and more pushed within a much narrower region than it would normally 
occupy at equilibrium. At the critical point R = R⋆ the free energy is not analytic.

https://doi.org/10.1088/1742-5468/aa690c


Universality of the third-order phase transition in the constrained coulomb gas

5https://doi.org/10.1088/1742-5468/aa690c

J. S
tat. M

ech. (2017) 053303

 (i) M is a Hermitian matrix of size N, whose off-diagonal entries are complex 
standard Gaussian, independent modulo the symmetry Mij = M ji, while the 
diagonal entries are independent real standard Gaussian. The eigenvalues of M 
are real random variables. This ensemble is named Gaussian unitary ensemble 
(GUE);

 (ii) M is an N ×N complex matrix whose N 2 entries are independent complex 
standard Gaussian. The eigenvalues of M are generically complex. This ensemble 
is called Ginibre unitary ensemble (GinUE).

The key fact of these ensembles is that the joint probability density of the eigenvalues 
(x1, . . . , xN) of M is explicitly known [33]. After a suitable rescaling on the variances of 
the entries Mij, one finds that

PN (x1, . . . , xN) =
1

ZN
exp

(
−N

N∑

k=1

|xk|2
)
∏

i<j

|xi − xj|2,

where

{
xi ∈ R if M ∈ GUE,
xi ∈ R2 if M ∈ GinUE.

 

(1)

(Of course, the value of the normalization constant ZN  is different in the two 
ensembles. With a slight abuse of notation, we will not distinguish between a measure 
and its density, and we identify C ≃ R2.)

As remarked by Dyson [15], the joint density (1) can be seen as the canonical 
measure of a system of particles interacting via logarithmic repulsion in a quadratic 
external potential at inverse temperature β = 2. In the GUE ensemble, the particles 
are constrained on the real line (n  =  1); in the GinUE ensemble the particles live on the 
plane (n  =  2). With this picture in mind, ZN  in both cases is the partition function of a 
d  =  2 Coulomb gas (− log |x| is the electrostatic potential in dimension two):

ZN =

∫

Rn

dx1 · · ·
∫

Rn

dxN exp

( ∑

i,j : i ̸=j

log |xi − xj|−N
∑

k

|xk|2
)
, (2)

where n  =  1 if M ∈ GUE, and n  =  2 if M ∈ GinUE.
Already at this early stage, a moment of reflection brings up a rather curious feature 

of these particle systems: for the GUE ensemble, there is an evident mismatch between 
the physical dimension where the particles live (n  =  1) and the Coulomb potential the 
particles feel (d  =  2). We will come back to this simple observation in the Conclusion 
section. To avoid confusion, we will always denote as log-gas a system of particles in Rn 
(for generic n ! 1) repelling with a logarithmic pairwise interaction.

For the GUE and GinUE, the eigenvalues empirical distribution ϱN = 1
N

∑N
k=1 δxk

 
converges to the celebrated ‘Wigner law’ and ‘circular law’, respectively:

ϱGUE(x) =
1

π

√
2− x2 1|x|!R⋆ , R⋆ =

√
2, (x ∈ R), (3)

ϱGinUE(x) =
1

π
1|x|!R⋆ , R⋆ = 1, (x ∈ R2). (4)

https://doi.org/10.1088/1742-5468/aa690c
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Here 1A denotes the indicator function of the set A, having the value 1 for all x ∈ A 
and 0 for all x /∈ A. The important feature is that, in both cases, the log-gas density 
concentrates on a bounded region (a ball of radius R⋆). It is possible to show that, as 
N → ∞ (and without any scaling), Pr{max |xi| ! R} converges to a step function: 0 if 
R < R⋆, and 1 if R > R⋆. The large-N scaling of these distributions approaching the 
step function is

Pr{max |xi| ! R} ≈ e−N2F (R), (5)
where the symbol  ≈  stands for equivalence at logarithmic scales. The exponential decay 
is decorated with a ‘large deviation function’ F(R) which is nothing but the excess free 
energy of the log-gas constrained to stay in the ball BR = {|x| ! R}:

F (R) = − lim
N→∞

1

N2
(logZN(R)− logZN), (6)

ZN(R) =

∫

BR

dx1 · · ·
∫

BR

dxN e
∑

i ̸=j log |xi−xj |−N
∑

k |xk|2 . (7)

The computation of the large deviation functions has been carried out explicitly by 
Dean and Majumdar [11] for the GUE, and by Cunden, Mezzadri and Vivo [9] for the 
GinUE6. The final result is

FGUE(R) =

{ 1
16 (8R

2 −R4 − 16 logR− 12 + 8 log 2) if R ! R⋆,
0 if R > R⋆,

 (8)

FGinUE(R) =

{1
4 (4R

2 −R4 − 4 logR− 3) if R ! R⋆,
0 if R > R⋆.

 (9)

The form of the large deviation function is specific to the model (FGUE(R) ̸= FGinUE(R)). 
Nevertheless, in both cases the pulled-to-pushed transition is a third-order phase  transition, 
i.e. the excess free energies are non-analytic with a discontinuous third derivative 
exactly at the critical point R = R⋆:

FGUE(R) ∼
√
2

3
(R⋆ −R)31R!R⋆ , FGinUE(R) ∼ 4

3
(R⋆ −R)31R!R⋆ , as R → R⋆.

 

(10)

There is a long list of matrix models exhibiting this third-order singularity. It is 
therefore tempting to suspect that non-universal large deviation functions of generic 
statistical models share the same universal critical exponent in presence of volume con-
straints. However, it also seems that logarithmic interactions must play a prominent, if 
not essential, role in this respect. Our findings below will instead show that a logarith-
mic repulsion is not essential to obtaining a third-order phase transition, and the source 
of this universality must be sought elsewhere.

6 These results are actually valid for any Dyson index β > 0, not just for the GUE and GinUE (β = 2), after a 
simple rescaling of the eigenvalues. The function FGinUE(R) is identical to a limiting case of the large deviation 
function for the index of GinUE computed in [2].

https://doi.org/10.1088/1742-5468/aa690c
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3. Large deviations and third-order phase transition for Coulomb gases

3.1. Definition of the model

We consider here a d-dimensional Coulomb gas in Rd. The canonical distribution of N 
charges in dimension d is

Pd,N (x1, . . . , xN) =
1

ZN,β
e−βEd(x1,...,xN ), (11)

with the energy

Ed (x1, . . . , xN) =
1

2

∑

i,j : i ̸=j

Φd(xi − xj) +N
∑

k

V (xk) , (xi ∈ Rd), (12)

and the partition function

ZN,β =

∫

Rd

dx1 · · ·
∫

Rd

dxNe
−βEd(x1,...,xN ). (13)

Here Φd(x) is the Coulomb electrostatic potential in dimension d, i.e. the solution 
of the distributional equation

−∆Φd(x) = Ωdδ(x) (x ∈ Rd, d ! 1), (14)
where Ωd = 2πd/2/Γ(d/2) is the surface area of the unit sphere Sd−1 in Rd, and Γ is the 
Euler gamma function. One gets

Φd(x) = ϕd(|x|), ϕd(r) =

{
1

(d−2)
1

rd−2 if d ≠ 2,

− log r if d = 2,
 (15)

where | · | denotes the Euclidean norm. To ensure the finiteness of the partition func-
tion for sufficiently large N, we will require the integrability and the growth conditions

∫

Rd

exp(−V (x))dx < ∞ , lim
|x|→∞

V (x)

Φd(x)
= +∞. (16)

3.2. Thermodynamic limit and main result

It is known [30] that entropy plays no role at leading order in N in the asymptotics of 
the partition function. This can be understood easily by recasting (13) as

ZN,β =

∫

Rd

dx1 · · ·
∫

Rd

dxN exp
(
− βN

[ 1
N

∑

i<j

Φd(xi − xj) +
∑

k

V (xk)
])

,

 

(17)

which shows, at least formally, that the limit N → ∞ is a simultaneous thermodynamic 
and zero-temperature limit in the mean-field regime. (This readily explains the familiar 
rescaling in β > 0 of the large deviation functions in random matrix theory.) The energy 
of a configuration (x1, . . . , xN) can be written in terms of the empirical distribution,

ϱN =
1

N

N∑

k=1

δxk
, (18)

https://doi.org/10.1088/1742-5468/aa690c
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as

Ed (x1, . . . , xN) = N2Ed[ϱN ], (19)
where the mean field energy functional is defined as

Ed[ϱ] =
1

2

∫ ∫

x̸=y

Φd(x− y)dϱ(x)dϱ(y) +

∫
V (x)dϱ(x). (20)

Under the assumptions (16) on V(x), it is known (see, for instance [4]) that the func-
tional Ed has weak-∗ compact level sets (and is thus lower semicontinuous) and that Ed 
is strictly convex where it is finite. The proof of the convexity is quite standard in d  =  1 
and d  =  2. For d ! 3, the proof is based on the fact that the external potential part is 
linear while the interaction potential can be written as conic combination of Gaussian 
kernels

ϕd(r) =
Ωd

4πd/2

∫ ∞

0

t
d−4
2 e−r2tdt. (21)

Compactness and strict convexity imply that Ed has a unique minimiser ϱeq, called 
equilibrium measure, among the probability measures on Rd. It turns out that, in the 
large-N limit, the empirical distribution ϱN converges to the deterministic equilibrium 
measure ϱeq [4, 26, 30, 37].

In the following, we consider the case of a radial external potential V (x) = v(|x|) 
satisfying the following hypotheses.

Assumptions A-1. The external radial potential v (r) (r ! 0) is of class C3. Moreover, 
we assume that v (r) and rd−1v′(r) are both strictly increasing (the last is true, e.g. if v (r) 
is strictly convex).

Note that the problem is radially symmetric and this symmetry is inherited by ϱeq. 
By our assumptions on v (r), it follows that ϱeq is supported on a ball. Indeed, introduc-
ing spherical coordinates x = rω ∈ Rd, with r ! 0 and ω ∈ Sd−1, by an application of 
Gauss’s law,

dϱeq(x) =
1

Ωd
∆V (x)dx, (22)

we get

dx = rd−1drdω, ∆V (x) =
d2v(r)

dr2
+

d− 1

r

dv(r)

dr
=

1

rd−1
(rd−1v′(r))′, (23)

and thus

dϱeq =
1

Ωd
(rd−1v′(r))′ 1r!R⋆ drdω. (24)

The equilibrium measure is concentrated on a ball of radius R⋆, which is given by the 
unique positive solution of

v′(R⋆)R
d−1
⋆ = 1, (25)

a direct consequence of normalization 
∫
dϱeq = 1.

https://doi.org/10.1088/1742-5468/aa690c
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Following the same line of reasoning of section 2, the probability that the Coulomb 
gas is contained in a ball of radius R converges to a step function

Pr{max |xi| ! R} N→∞−→
{
0 if R < R⋆,
1 if R " R⋆.

 (26)

On the other hand, similarly to (5), one expects

Pr{max |xi| ! R} ≈ e−βN2Fd(R), (27)
where the large deviation function Fd (R) decorating the asymptotics (27) is the excess 
free energy of the constrained d-dimensional Coulomb gas

Fd(R) = − lim
N→∞

1

βN2

(
logZN,β(R)− ZN,β

)
, (28)

where ZN,β is the free partition function (13), while

ZN,β(R) =

∫

BR

dx1 · · ·
∫

BR

dxN e−βEd(x1,...,xN )
 (29)

is the partition function of the Coulomb gas constrained to stay inside the ball of 
radius R

BR = {x ∈ Rd : |x| ! R}. (30)
From (26) and (27), we infer that Fd (R) is identically zero for R ! R⋆ and strictly 
positive when R < R⋆. Hence, the excess free energy is non-analytic at the critical 
value R = R⋆ that separates the pulled and the pushed phases. What is the order of 
this trans ition? Our main result is the existence of a third-order phase transition with 
respect to the parameter R. The precise statement is as follows.

Main result. Let the radial potential V (x) = v(|x|) satisfy the coercivity conditions 
(16) and the assumptions A-1. Then,

 (i) the excess free energy (28) is given by the explicit formula:

Fd(R) =
1

2

∫ R⋆

min{R,R⋆}

(
rd−1v′(r)2 − 2v′(r)− ϕ′

d(r)
)
dr, (31)

 (ii) the system undergoes a third-order phase transition at R = R⋆, i.e. 
Fd(R) ∈ C2(0,∞), and at the critical value the third derivative is discontinuous:

Fd(R⋆) = 0, F ′
d(R⋆) = 0, F ′′

d (R⋆) = 0, (32)

and lim
R↑R⋆

F ′′′
d (R) < lim

R↓R⋆

F ′′′
d (R) = 0. (33)

If we accept the claim (i), we can prove the third-order phase transition (ii) as fol-
lows. Fd (R) given in (31) is manifestly continuous. Note that Fd (R) and all its deriva-

tives F
(k)
d (R) are identically zero for R > R⋆. It remains to study the behaviour of 

F (k)
d (R) as R ↑ R⋆. From (31) we have that, for R < R⋆,

https://doi.org/10.1088/1742-5468/aa690c
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F ′
d(R) =

ϕ′
d(R)

2
+ v′(R)− 1

2
Rd−1v′(R)2, (34)

F ′′
d (R) =

ϕ′′
d(R)

2
+ v′′(R)− d− 1

2
Rd−2v′(R)2 −Rd−1v′(R)v′′(R), (35)

F ′′′
d (R) =

ϕ′′′
d (R)

2
+ v′′′(R)− (d− 1)(d− 2)

2
Rd−3v′(R)2

− 2(d− 1)Rd−2v′(R)v′′(R)−Rd−1v′′(R)2 −Rd−1v′(R)v′′′(R).
 

(36)
We also need the first three derivatives of the Coulomb potential

ϕ′
d(r) = − 1

rd−1
, ϕ′′

d(r) = −d− 1

rd
, ϕ′′′

d (r) =
d(1− d)

rd+1
. (37)

Therefore, from (34), using (25) and (37) we find

lim
R↑R⋆

F ′
d(R) =

1

2
(ϕ′

d(R⋆) + v′(R⋆)) =
1

2

(
− 1

Rd−1
⋆

+ v′(R⋆)

)
= 0. (38)

For the second derivative, using again (25) and (37), we get

lim
R↑R⋆

F ′′
d (R) =

ϕ′′
d(R⋆)

2
− d− 1

2R
v′(R⋆) =

d− 1

2

(
1

Rd
⋆

− v′(R⋆)

R⋆

)
= 0. (39)

We analyse now the third derivative. Proceeding as before we find

lim
R↑R⋆

F ′′′
d (R) =

ϕ′′′
d (R⋆)

2
− (d− 1)(d− 2)

2Rd+1
⋆

− 2
(d− 1)

Rd+1
⋆

v′′(R⋆)−
v′′(R⋆)2

R1−d
⋆

. (40)

If we write explicitly the condition that rd−1v′(r) is strictly increasing we have

v′′(r) >
1− d

r
v′(r), r > 0. (41)

Hence we get v′′(R⋆) > (1− d)/Rd
⋆ and using (37) we conclude that

lim
R↑R⋆

F ′′′
d (R) <

d(1− d)

2Rd+1
⋆

− (d− 1)(d− 2)

2Rd+1
⋆

− 2
(d− 1)2

Rd+1
⋆

+
(d− 1)2

Rd+1
⋆

= 0. (42)

This concludes the proof of the third-order transition

Fd(R) ≃ (R⋆ −R)31R!R⋆ , as R → R⋆. (43)
It remains to prove the claim (i) on the explicit form of the large deviation function.

Remarks. The assumptions on the potential v (r) are not technical. Of course, we require 
that v ∈ C3 in order to ensure that the derivatives of Fd (R) for R < R⋆ do exist (see (34)–
(36)). The condition that v (r) and rd−1v′(r) are strictly increasing implies that the support 
of equilibrium measure (pulled phase) is simply connected (a ball). It is known that the 
‘trans itions’ when the pulled phase is supported on a non-simply connected region display, 
in general, different exponents (see, e.g. multi-cut Hermitian matrix models).

The exponent 3 in (43) is therefore ‘universal’. (The non-universal constant in front 
of (43) is the right hand-side of (40).) For d  =  2, the explicit computation of Fd (R) in 
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the case of quadratic potential (Ginibre ensemble in random matrix theory) has been 
done in [9]. In that paper, the authors posed a question on the universality of the third-
order transition for normal matrix models. The answer is ‘Yes’.

4. Free energy for radial potentials

In order to compute the large deviation function (28), one needs to extract the lead-
ing order in the asymptotics of the partition function of the constrained Coulomb 
gas (29). Recently, the large-N asymptotics of the free energies of Coulomb gases in 
dimension d with quite generic potential has been investigated in great detail [4, 26, 
30, 37, 41]. It has been proved that, for large N, the free energy is dominated by 
the minimum of the energy functional Ed in (20). Then, the following saddle-point 
approximation holds true

− lim
N→∞

1

βN2
logZN,β(R) = Ed[ϱR], (44)

where ϱR is the equilibrium measure of the constrained Coulomb gas, i.e. the minimiser 
of the mean field functional over the set of probability measures supported on the ball 
of radius R

Ed[ϱR] = min

{
Ed[ϱ] : ϱ ! 0,

∫

BR

dϱ(x) = 1

}
. (45)

Therefore, the excess free energy (28) is given by

Fd(R) = − lim
N→∞

1

βN2
log

ZN,β(R)

ZN,β
= Ed[ϱR]− Ed[ϱeq]. (46)

Thus the technical problem is i) to find the minimiser ϱR, and ii) compute the minimum 
energy Ed[ϱR].

4.1. Finding the equilibrium measure

To solve the problem, we exploit the radial symmetry of the system and the fundamen-
tal properties of the Coulomb potential. First, we define the total energy density of the 
constrained gas at x ∈ Rd

εd(x,R) =

∫
Φd(x− y) dϱR(y) + V (x). (47)

Observe that εd(x,R) is the electrostatic potential at x jointly created by the distribu-
tion of charge ϱR and the external potential V. The unknown measure ϱR satisfies the 
condition of electrostatic equilibrium [4]

{
εd(x,R) ! CR for |x| " R,
εd(x,R) = CR for x in the support of ϱR,

 (48)

for some constant CR (independent of x). The ‘Euler–Lagrange equations’ (48) can 
be understood, in electrostatic terms, as follows. The fact that εd(x,R) is constant 

https://doi.org/10.1088/1742-5468/aa690c


Universality of the third-order phase transition in the constrained coulomb gas

12https://doi.org/10.1088/1742-5468/aa690c

J. S
tat. M

ech. (2017) 053303

inside the support of ϱR indicates that the electric field (−∇εd(x,R)) is zero inside this 
 support. The fact that εd(x,R) takes greater values outside this support implies that 
the charges are confined within the support, and that taking any small amount of 
charge outside the support would increase the total electrostatic energy of the system. 
In the unconstrained problem, the equilibrium measure ϱeq is supported on the ball of 
radius R⋆ (see (24) and (25)). Hence, as long as R ! R⋆, the constraint is ineffective and 
the functional is minimised by ϱR = ϱeq.

Let us consider now the case R < R⋆, when the Coulomb gas gets pushed by the 
volume constraint. The minimiser can be identified by imposing two basic conditions 
valid at electrostatic equilibrium: the Gauss’s law must be satisfied and any excess of 
charge gets localised at the surface of a conductor. Hence, the volume constraint does 
not change the charge distribution in the interior of the ball and we have

ϱR(x) = ϱeq(x) for |x| < R. (49)
Of course 

∫
|x|<R dϱR(x) =

∫
|x|<R dϱeq(x) < 1. The missing charge is localized on the 

surface and, by symmetry, is uniformly distributed on the sphere of radius R. Using 
spherical coordinates, the radial and angular distributions factorise and eventually we find

dϱR(r,ω) =
1

Ωd

[
(rd−1v′(r))′ 1r!R +

(
1−Rd−1v′(R)

)
δ(r −R)

]
drdω, (50)

valid when R < R⋆. In the pushed phase, the Coulomb gas equilibrium measure has a 
singular component (non-fluid phase). At R = R⋆, using (25) one recovers ϱeq.

The correctness of (50) can be ascertained by checking the equilibrium conditions 
(48). Here we need the following electrostatic integration formula

1

Ωd

∫

Sd−1

ϕd(|x− rω|) dω = ϕd(max{|x|, r}). (51)

(The identity is a one-line proof for d  =  1, a classical formula in complex analysis 
for d  =  2 and a familiar fact for electrostatics in dimension d  =  3. In fact, it is possible 
to prove (51) for generic d ! 1 by using the same textbook argument valid in R3 based 
on Gauss’s law. See [27, theorem 9.7].)

Using (51), we easily verify that (50) satisfies the condition of constant energy den-
sity εd(x,R) on the support of ϱR. For |x| ! R, we have

εd(x,R) = v(|x|) +
∫ ∞

0

ϕd(max{|x|, r})(rd−1v′(r))′ 1r!R dr

+
(
1−Rd−1v′(R)

) ∫ ∞

0

ϕd(max{|x|, r})δ(r −R) dr

= v(|x|) + ϕd(|x|)
∫ |x|

0

(rd−1v′(r))′ dr +

∫ R

|x|
ϕd(r)(r

d−1v′(r))′ dr

+
(
1−Rd−1v′(R)

)
ϕd(R)

= ϕd(R) + v(R),

 

(52)
where we applied (in order) the electrostatic formula (51), and integration by parts.
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4.2. Computation of the large deviation function

The next step is to compute the minimum energy Ed[ϱR]. The simplest way is by 
observing that

Ed[ϱR] =
1

2

∫

BR

(
εd(x,R) + V (x)

)
dϱR(x). (53)

Since, from (52), εd(x,R) = ϕd(R) + v(R) for |x| ! R, and 
∫
BR

dϱR(x) = 1, using (50) we 
find that, for R < R⋆,

Ed[ϱR] =
1

2
ϕd(R) + v(R)− 1

2

∫ R

0

rd−1v′(r)2dr. (54)

Thus the large deviation function is given by

Fd(R) = Ed[ϱR]− Ed[ϱeq] = Ed[ϱR]− Ed[ϱR⋆ ]

=

∫ R

R⋆

[
1

2
ϕ′
d(r) + v′(r)− 1

2
rd−1v′(r)2

]
dr.

 (55)

Note again that ϱR = ϱeq for R ! R⋆, and hence Fd (R)  =  0. Therefore Fd (R) can be 
written as (31) as claimed. This concludes the proof of part (i) of the main result.

5. Quadratic confinement: random matrices and the jellium model

In this section, we specialise the general result to the case of a quadratic external 
potential

V (x) =
1

2
|x|2. (56)

As already discussed in section 2, in dimension d  =  2, the log-gas in a quadratic poten-
tial is statistically equivalent to the eigenvalues of the complex Ginibre ensemble 
(GinUE). In fact, the Coulomb gas in a quadratic potential is also related to the jellium 
and has a long history in the tradition of classical and quantum statistical physics in 
dimension d  =  1, 2 and 3 (see [1, 3, 18, 23, 25, 28, 42]). The jellium model was invented 
by Wigner [42] to investigate qualitative properties of electrons in metals and plasmas. 
Wigner’s approximation is quite simple: instead of studying electrons hosted in an ion 
lattice, one considers an electron gas embedded in a positive continuum and uniform gel  
(a ‘positive jelly’). It is a simple exercise to show that a uniformly charged ball gener-
ates a quadratic electric potential inside the ball.

For this model in generic dimension d, it is easy to see that, for large N, the nor-
malised charge density at equilibrium converges to the uniform measure on the unit 
ball (the critical radius is R⋆ = 1)

ϱeq(x)dx =
d

Ωd
1|x|!1dx. (57)
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This is the unique distribution that neutralises the uniform background, and is the 
d-dimensional counterpart of the circular law of random matrix theory (d  =  2). In 
presence of a volume constraint, the minimiser of the energy Ed among the probability 
measures supported on the ball of radius R is given by (50) with v (r)  =  r2/2. Explicitly 
we have

dϱR(r,ω) =

{
1
Ωd

[
d rd−11r!R + (1−Rd)δ(r −R)

]
drdω if R ! 1,

1
Ωd
d rd−11r!1 drdω if R > 1. (58)

Using the general result (31), we eventually find the unified formula for the large 
deviation function in generic dimension (see figure 2)

Fd(R) =

{
R2−d

2(d−2) −
R2+d

2(d+2) +
R2(d−2)(d+2)−d2

2(d−2)(d+2) if R ! 1,

0 if R > 1.
 (59)

(for d  =  2 we take F2(R) = limd→2 Fd(R)).
For instance, we have

F1(R) =
1

6
(1−R)3, (60)

F2(R) =
1

8
(4R2 −R4 − logR4 − 3), (61)

F3(R) =
1

2R
− 1

5
R5 +

1

2
R2 − 9

5
, (62)

for R ! 1. For d  =  2, equation (61) agrees with the result in [9]. For all d ! 1:

Fd(R) ∼ d2

6
(1−R)3 1R!1 as R → 1. (63)

Figure 2. Excess free energy Fd (R) (see equation (59)) for a d-dimensional Coulomb 
gas in Rd in a quadratic potential, for various values of d ! 1. Note that Fd (R)  =  0 
for R greater than the critical radius (here R⋆ = 1).
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6. Conclusions

From a wide perspective, Coulomb gases are, perhaps, the simplest example of statisti-
cal mechanical systems for which it is possible to assign a thermodynamic meaning to 
and to characterise in full the ‘pulled-to-pushed’ transition. The key elements in the 
proof of our result are the basic properties of the Coulomb interaction and the isotropy 
of the models considered. As a consequence, the equilibrium measure of those systems 
can be written rather explicitly, even in presence of hard constraints. The difficulty in 
trying to generalise our findings to non-isotropic Coulomb gases is that explicit form-
ulae for the equilibrium measure are not readily available.

We conclude with some open problems and a couple of further remarks, inspired by 
our discussion in section 2:

 (i) The excess free energy of the pushed phase provides the left large deviation tail 
of Pr{max |xi| ! R}, when R ! R⋆. A standard argument [9, 29, 32, 34] allows to 
obtain the right large deviation tail as energy cost in pulling one particle from its 
equilibrium position inside the support of the equilibrium measure and relocating 
it in a generic position at distance R > R⋆ (‘pulled’ phase). Skipping the details 
of the computations, one finds

Pr{max |xi| ! R} ≈ e−N2Fd(R) if R ! R⋆, (64)

Pr{max |xi| ! R} ≈ e−NHd(R) if R ! R⋆, (65)
  where Fd (R) is given in (31), and

Hd(R) =

∫ max{R,R⋆}

R⋆

(ϕ′
d(r) + v′(r)) dr. (66)

  While the functions Fd (R) and Hd (R) govern the rate of atypical fluctuations 
away from the unconstrained situation, the question of typical fluctuations is also 
interesting. One indeed expects the existence of scaling constants aN, bN (possibly 
dependent on d ) and a cumulative function Gd (t) (the latter independent of N ) 
such that

Pr{aN + bN max |xi| ! t} → Gd(t), as N → ∞. (67)
  In other words, the scaling function Gd (t) describes the typical fluctuations of 

max |xi| in a neighbourhood of the critical point R⋆. In a certain sense, Gd is the 
crossover function between the large deviation functions Fd and Hd that describe 
fluctuations of order O(1).

  It would be interesting to compute Gd (t) explicitly for various d and address the 
question of its (microscopic) universality. For d  =  2 (log-gas in the plane), it is 
known that Gd=2(t) is the Gumbel distribution [5, 36] (again under the assump-
tions A-1 on V(x)). To the best of our knowledge, the scaling function Gd (t) for 
d ̸= 2 has not been investigated. (Note that for the log-gas on the line (e.g. the 
GUE) the scaling function is a squared Tracy–Widom [12, 16].)
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 (ii) In the GUE model, the equilibrium density (the semicircle law) is continuous 
and vanishes as a square root (R2

⋆ − x2)1/2 at the edges (3) as long as R > R⋆; in 
the ‘pushed’ phase R < R⋆, the density diverges as (R2 − x2)−1/2 at the pushing 
walls ±R. For the GinUE ensemble, the equilibrium density (the circular law) is 
uniform in the unit circle (4), and acquires a singular component at the pushing 
constraining walls. Clearly, the phenomenology of constrained densities for log-
gases in dimension n  =  1 and n  =  2 is quite different (see [9, 11] for details). 
Nevertheless the critical exponent is the same.

  Can a general relation be found between the behaviour of the equilibrium density 
at the edges and the critical exponent? An intriguing ‘scaling argument’ was 
put forward to justify the critical exponent for eigenvalues of Hermitian random 
matrices (see the review by Majumdar and Schehr [31]). The argument, based 
on a matching between ‘typical’ and ‘large’ deviations, predicts that if the equi-
librium density (without constraints) vanishes as (R⋆ − x)γ at the edge, then the 
excess free energy at the critical point behaves as F (R) ≃ (R⋆ −R)2(1+γ). For 
off-critical Hermitian random matrices, when γ = 1/2, one indeed recovers the 
exponent 3. Unfortunately, this argument seems unable to explain the occur-
rence of a third-order phase transition in either the GinUE ensemble, or the 
d-dimensional Coulomb gases considered in this paper (where the equilibrium 
density is discontinuous at the edge). Hence, the quest for a more viable connec-
tion between these seemingly unrelated objects is still open.

 (iii) We noticed in section 2 that for unitary invariant random matrices a mismatch 
occurs between the dimension of the Coulomb potential (d  =  2) and the physical 
dimension the system lives in (n  =  1). Yet, the critical exponent is still 3 (although 
this has only been proved for a quadratic confining potential). It would be inter-
esting to understand if this feature persists in higher dimensions: for a gas in Rn 
interacting through the d-dimensional Coulomb repulsion (the solution Φd of the 
d-dimensional distributional equation (14)), is the critical exponent always 3? 
One may imagine to fill in the following table

Coulomb Interaction Φd

Physical space Rn 1 2 3 4 ⋯
1 ✓ ✓
2 ✓
3 ✓
4 ✓
⋮

  The underlined checkmarks correspond to the log-gases living in dimension n  =  1 
and n  =  2 (e.g. the GUE and GinUE, respectively). In the present work, we 
have covered the diagonal situation n  =  d (checkmarks). The above discussion 
suggests that for n  <  d the singularity of the pushed density at the constraining 
walls should become milder and milder as one moves away from the diagonal 
n  =  d, but whether the transition is still third-order remains an interesting open 
problem.
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More generally, the main moral to be drawn from the above is that the analytic proper-
ties of the excess free energy of constrained particle systems with repulsive interaction 
may be universal, i.e. to some extent independent of the detailed behaviour of the con-
strained equilibrium density. One could investigate this point by considering particle 
systems with interaction kernel G (x) which is the fundamental solution DG(x) = δ(x) 
of some differential operator D (in this paper D = (−1/Ωd)∆ is the Laplacian). This 
however is another story which will have to await a future work. It may not be too 
much to hope that the method and the ideas developed here will find useful applica-
tions in other statistical models.
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