In this note we study the global existence of small data solutions to the Cauchy problem for the semilinear wave equation with a not effective scale-invariant damping term, namelyvtt-▵v+21+tvt=|v|p,v(0,x)=v0(x),vt(0,x)=v1(x), where p > 1 , n ≥ 2 We prove blow-up in finite time in the subcritical range p ∈ ( 1 , p 2 ( n ) ] and existence theorems for p > p 2 ( n ) , n = 2 , 3 In this way we find the critical exponent for small data solutions to this problem. Our results lead to the conjecture p 2 ( n ) = p 0 ( n + 2 ) for n ≥ 2 , where p 0 ( n ) is the Strauss exponent for the classical semilinear wave equation with power nonlinearity.

A shift in the Strauss exponent for semilinear wave equations with a not effective damping

D'ABBICCO, MARCELLO;LUCENTE, SANDRA;
2015-01-01

Abstract

In this note we study the global existence of small data solutions to the Cauchy problem for the semilinear wave equation with a not effective scale-invariant damping term, namelyvtt-▵v+21+tvt=|v|p,v(0,x)=v0(x),vt(0,x)=v1(x), where p > 1 , n ≥ 2 We prove blow-up in finite time in the subcritical range p ∈ ( 1 , p 2 ( n ) ] and existence theorems for p > p 2 ( n ) , n = 2 , 3 In this way we find the critical exponent for small data solutions to this problem. Our results lead to the conjecture p 2 ( n ) = p 0 ( n + 2 ) for n ≥ 2 , where p 0 ( n ) is the Strauss exponent for the classical semilinear wave equation with power nonlinearity.
File in questo prodotto:
File Dimensione Formato  
DAbbicco Lucente Reissig 2015 JDE Strauss shift.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 421.36 kB
Formato Adobe PDF
421.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Postprint DAbbiccoLucenteReissig2015 JDE.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 220.93 kB
Formato Adobe PDF
220.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/176697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 70
social impact