In this note we study the global existence of small data solutions to the Cauchy problem for the semilinear wave equation with a not effective scale-invariant damping term, namelyvtt-▵v+21+tvt=|v|p,v(0,x)=v0(x),vt(0,x)=v1(x), where p > 1 , n ≥ 2 We prove blow-up in finite time in the subcritical range p ∈ ( 1 , p 2 ( n ) ] and existence theorems for p > p 2 ( n ) , n = 2 , 3 In this way we find the critical exponent for small data solutions to this problem. Our results lead to the conjecture p 2 ( n ) = p 0 ( n + 2 ) for n ≥ 2 , where p 0 ( n ) is the Strauss exponent for the classical semilinear wave equation with power nonlinearity.
A shift in the Strauss exponent for semilinear wave equations with a not effective damping
D'ABBICCO, MARCELLO;LUCENTE, SANDRA;
2015-01-01
Abstract
In this note we study the global existence of small data solutions to the Cauchy problem for the semilinear wave equation with a not effective scale-invariant damping term, namelyvtt-▵v+21+tvt=|v|p,v(0,x)=v0(x),vt(0,x)=v1(x), where p > 1 , n ≥ 2 We prove blow-up in finite time in the subcritical range p ∈ ( 1 , p 2 ( n ) ] and existence theorems for p > p 2 ( n ) , n = 2 , 3 In this way we find the critical exponent for small data solutions to this problem. Our results lead to the conjecture p 2 ( n ) = p 0 ( n + 2 ) for n ≥ 2 , where p 0 ( n ) is the Strauss exponent for the classical semilinear wave equation with power nonlinearity.File | Dimensione | Formato | |
---|---|---|---|
DAbbicco Lucente Reissig 2015 JDE Strauss shift.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
421.36 kB
Formato
Adobe PDF
|
421.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Postprint DAbbiccoLucenteReissig2015 JDE.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
220.93 kB
Formato
Adobe PDF
|
220.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.