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Abstract

In this note we study the global existence of small data solutions to the Cauchy problem for the semilinear wave
equation with a not effective scale-invariant damping term, namely

vtt − △v +
2

1 + t
vt = |v|p, v(0, x) = v0(x), vt(0, x) = v1(x),

where p > 1, n ≥ 2. We prove blow-up in finite time in the subcritical range p ∈ (1, p2(n)] and existence theorems
for p > p2(n), n = 2, 3. In this way we find the critical exponent for small data solutions to this problem. Our
results lead to the conjecture p2(n) = p0(n + 2) for n ≥ 2, where p0(n) is the Strauss exponent for the classical

semilinear wave equation with power nonlinearity.

Keywords: semilinear damped wave equation, not effective damping, small data global existence, Strauss
exponent
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1. Introduction

In this paper we study the global existence (in time) of small data solutions to
vtt − △v +

2
1 + t

vt = |v|p, t > 0, x ∈ Rn,

v(0, x) = v0(x), x ∈ Rn,

vt(0, x) = v1(x), x ∈ Rn,

(1)
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in space dimensions n = 2, 3. The damping term of this model is not effective (see [29]). Nevertheless, there
should be an improving influence on the critical exponent pcrit in comparison with Strauss exponent p0(n) for

wtt − △w = |w|p, t > 0, x ∈ Rn,

w(0, x) = w0(x), x ∈ Rn,

wt(0, x) = w1(x), x ∈ Rn,

(2)

here p0(n) is the positive solution to
(n − 1) p2 − (n + 1) p − 2 = 0.

By critical exponent pcrit for (1) or (2) we mean, that for small initial data in a suitable space, there exist global
(in time) solutions for some range of admissible p > pcrit, and there exist suitable (even small) data such that there
exist no global (in time) solutions if p ∈ (1, pcrit].

It has been recently shown that the critical exponent for models with effective dissipation, this means, µ is
sufficiently large (see [29]) in the model

vtt − △v +
µ

1 + t
vt = |v|p, t > 0, x ∈ Rn,

v(0, x) = v0(x), x ∈ Rn,

vt(0, x) = v1(x), x ∈ Rn,

(3)

is pcrit = 1 + 2/n (see Section 2 for details). The exponent 1 + 2/n is the same as for the semilinear heat equation,
and it is related to the effectiveness of the damping, i.e., the property of the damping term to make suitable linear
estimates for the wave equation similar to the ones for the corresponding heat equation µvt − (1 + t)△v = 0 (in
particular, the L1 − Lp low frequencies estimates). We set

p∞(n) = 1 + 2/n,

where the index∞ means that µ is sufficiently large.
On the contrary, it seems to be not so easy to show that for small positive values of µ, for example, µ = 2 the

critical exponent pµ(n) is strictly larger than p∞(n). Summarizing all these explanations one would expect

p∞(n) < pµ(n) < p0(n)

for µ in a suitable range. Indeed, this happens because one of the main goals of the paper is to prove p∞(3) <
p2(3) < p0(3).
In this paper, we reach this aim by setting µ = 2 in (3), and showing that

p2(n):=max{p0(n + 2); p∞(n)} =

3 if n = 1,
p0(n + 2) if n = 2, 3.

(4)

We notice that p∞(2) = p0(4) = 2 and p∞(3) < p0(5). Hence, for n = 3 and µ = 2 in (3), we really feel the
influence of the not effective dissipation term.

We prove the following results:

Theorem 1. Assume that v ∈ C2([0,T ) × Rn) is a solution to (1) with (even small) initial data (v0, v1) ∈ C2
c(Rn) ×

C1
c(Rn) such that v1, v0 ≥ 0, and (v0, v1) . (0, 0). If p ∈ (1, p2(n)], then T < ∞.

Being the 1-dimensional existence result already proved in [3], in one space dimension, since the dissipation
in (1) is effective, with respect to the linear estimates employed in [3], we prove the existence result for space
dimension n = 2 and n = 3.

Theorem 2. Let n = 2 and p > 2 = p0(4). Let (v̄0, v̄1) ∈ C2
c(R2) × C1

c(R2). Then there exists ε0 > 0 such that for
any ε ∈ (0, ε0), if v0 = εv̄0 and v1 = εv̄1, then the Cauchy problem (1) admits a unique global (in time) small data
solution v ∈ C([0,∞),H2) ∩ C1([0,∞),H1) ∩ C2([0,∞), L2).
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Theorem 3. Let n = 3 and p > p0(5). Let (v̄0, v̄1) ∈ C2
c(R3)×C1

c(R3), be radial. Then there exists ε0 > 0 such that
for any ε ∈ (0, ε0), if v0 = εv̄0 and v1 = εv̄1, then the Cauchy problem (1) admits a unique global (in time) small
data radial solution v ∈ C([0,∞) × R3) ∩ C2([0,∞) × (R3 \ {0})).

For the sake of brevity, we use the notation

⟨y⟩ = 1 + |y| for any y ∈ Rn.

To prove our results we perform the change of variable u(t, x) = ⟨t⟩v(t, x). So, problem (1) becomes
utt − △u = ⟨t⟩−(p−1)|u|p, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn

(5)

with u0 = v0 and u1 = v0 + v1. This means we are dealing with a semilinear wave equation with a time-dependent
coefficient in the nonlinearity. For proving Theorem 1 we will extend to this equation the classical blow-up tech-
nique due to R.T. Glassey. For Theorem 2 we use Klainerman vector fields. Due to the lack of regularity of the
nonlinear term, for p ∈ (p0(5), 2), the proof of Theorem 3 requires a different idea and we shall restrict to radial
solutions. We will establish an appropriate version of the pointwise estimates for the wave equation.
By the aid of these estimates, in this latter case, we will also find a decay behaviour for the solution to (1) which
is the same as for solutions to the (n + 2)-dimensional wave-equations. For details, see Theorem 6 and Remark 6.
We expect that the technique of the pointwise estimates could be applied to prove the existence for p > p0(n + 2)
with n ≥ 4. Consequently, the improving influence of the dissipation term on the one hand and the not effective
behaviour on the other hand can be expressed by a shift of Strauss exponent p0(n) to p0(n+ 2) as in the title of this
paper (see also Remark 10 and [5]).

2. An overview of some existing results

2.1. Wave model

For the Cauchy problem (2) it is well-known that the critical exponent for the existence of global (in time)
small data solutions is p0(n). More precisely, if 1 < p ≤ p0(n), then solutions to (2) blow-up in finite time for a
suitable choice of initial data (see [9], [13], [14], [20], [21], [26]), whereas for p ∈ (p0(n), (n+ 3)/(n− 1)] a unique
global (in time) small data solution exists (see [8], [10], [13], [24], [30]). In space dimension n = 1, solutions
to (2) blow-up in finite time for any p > 1, hence, we put p0(1) = ∞ (see [9]).

2.2. Scale-invariant damped wave models

Known results on the global existence of small data solutions to (3) can be summarized as follows:

• Non-existence of weak solutions for µ > 1 and p ≤ 1 + 2/n, provided
∫
Rn

(
u0 + (µ − 1)−1u1

)
d x > 0 (see

Theorem 1.1 and Example 3.1 in [4]).

• Non-existence of weak solutions for µ ∈ (0, 1] and p ≤ 1 + 2/(n − 1 + µ), provided
∫
Rn

u1 d x > 0 (see

Theorem 1.4 in [28]).

• According to Theorems 2 and 3 in [3] global (in time) existence of energy solutions for small data if p >
1 + 2/n and

– if n = 1 and µ ≥ 5/3,

– if n = 2 and µ ≥ 3,

– for any n ≥ 3 if µ ≥ n + 2.
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2.3. Useful transformations

The equation in (3) has many interesting properties. In particular, if µ ∈ R, by the change of variables

v♯(t, x) = ⟨t⟩µ−1 v(t, x) (6)

one sees that v solves (3) if, and only if, v♯(t, x) solves
v♯tt − △v♯ +

µ♯

⟨t⟩
v♯t = ⟨t⟩

(µ♯−1)(p−1)|v♯|p,

v♯(0, x) = v0(x),
v♯t (0, x) = v1(x) + (1 − µ♯)v0(x)

(7)

with µ♯ = 2 − µ .
If µ ∈ (−∞, 1) in (3), by introducing the change of variable ṽ(t, x) = v(Λ(t) − 1, x), where

Λ(t):=
⟨t⟩ℓ+1

ℓ + 1
, and ℓ =

µ

1 − µ
, (8)

the Cauchy problem (3) becomes a Cauchy problem for a semilinear free wave equation with polynomial propa-
gation speed 

ṽtt − ⟨t⟩2ℓ△ṽ = ⟨t⟩2ℓ |ṽ|p,
ṽ(t̄, x) = v0(x),
ṽt(t̄, x) = (1 − µ)−µv1(x),

(9)

where t̄ = (1 − µ)−(1−µ) − 1. We notice that:

• ℓ > 0 if, and only if, µ ∈ (0, 1). On the other hand, ℓ ∈ (−1, 0) if µ ∈ (−∞, 0);

• t̄ ∈ (0, e
1
e − 1] if µ ∈ (0, 1) and t̄ → 0 as µ→ 0 and as µ→ 1;

• t̄ ∈ (−1, 0) if µ ∈ (−∞, 0).

Similarly, by virtue of (6), (7) and (8), if µ > 1, the Cauchy problem (3) becomes
ṽ♯tt − ⟨t⟩

2ℓ♯△ṽ♯ = cµ ⟨t⟩2ℓ
♯−(p−1)|ṽ♯|p,

ṽ♯(t♯, x) = v0(x),
ṽ♯t (t

♯, x) = (µ − 1)−(2−µ)(v1(x) + (µ − 1)v0(x)),
(10)

where ℓ♯ = (2 − µ)/(µ − 1), t♯ = (µ − 1)−(µ−1) − 1, and cµ = (µ − 1)(µ−1)(p−1).
On the other hand, if µ = 1, by setting Λ(t) = et, the Cauchy problem (3) becomes

ṽtt − e2t△ṽ = e2t |ṽ|p,
ṽ(0, x) = v0(x),
ṽt(0, x) = v1(x).

(11)

By means of all these transformations, following the reasoning in Example 4.4 in [4], we can obtain as in [28]
the non-existence of global (in time) weak solutions to (3) for µ ∈ (0, 1) and

p ≤ 1 +
2(ℓ + 1)

n(ℓ + 1) − 1
= 1 +

2
n − 1 + µ

.
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2.4. Blow-up dynamics

Since in [4, 28] the test function method is employed, the blow-up dynamic remains unknown. However, one
can apply an argument similar to those developed in [9], to (9), (10) and (11), obtaining that all the Lq norms of
local solutions blow-up in finite time. Indeed, in Example 2a in [25] the author gives sufficient conditions on

utt − a2(t)∆u = m(t)|u|p,

which guarantee that lim
t→T
∥u(t)∥q = +∞ for any 1 ≤ q ≤ +∞, where T is the maximal existence time for a smooth

solution with nonnegative, compactly supported, initial data. See also [7] for the 1-dimensional case. By means
of (9), (10) and (11) from these results one can deduce the blow-up in finite time for (3)

• if µ ∈ (0, 1) and p < 1 +
2

n − 1 + µ
,

• if µ = 1 and p ≤ p∞,

• if µ ∈ (1, 2] and p < p∞.

We notice that blow-up in finite time is proved for the limit case p = 1 + 2/(n − [1 − µ]+) only for µ = 1, while
non-existence of weak solutions for µ ∈ (0, 1) ∪ (1, 2] is also known for p = 1 + 2/(n − [1 − µ]+). Up to our
knowledge we have no other information from literature about existence or non-existence for (3). In particular, the
blow-up dynamic is unknown for µ > 2.

After this discussion, it was natural to ask if the blow-up exponent p∞(n) = 1 + 2/n could be improved for
some µ ∈ [1, 5/3) if n = 1, for some µ ∈ [1, 3) if n = 2, or for some µ ∈ [1, n + 2) if n ≥ 3. On the other hand, one
may ask if a counterpart result of global (in time) existence can be proved. Theorems 1, 2, 3 give a positive answer
to these questions in the special case µ = 2. These results may give precious hints about the general case of small
µ.

2.5. Space-dependent damping term

For the sake of completeness, we remark that the case of wave equation with space-dependent damping
vtt − △v + µ⟨x⟩−α vt = |v|p, t > 0, x ∈ Rn,

v(0, x) = v0(x), x ∈ Rn,

vt(0, x) = v1(x), x ∈ Rn,

(12)

where µ > 0 and α ∈ (0, 1], is also particularly difficult when α = 1. On the one hand, in [11], the authors proved
that the critical exponent for the existence of global (in time) small data solutions is 1 + 2/(n − α) if α ∈ (0, 1).
On the other hand, in [12] they proved for α = 1 that the estimates for the energy of solutions to the linear model
of (12) show a decay rate which depends on µ for µ < n. This property hints to a µ-depending critical exponent
for (12) for small µ.

To complete our overview, we mention that the critical exponent for the wave equation with time-dependent
damping µ⟨t⟩κut is 1 + 2/n if κ ∈ (−1, 1) (see [6, 18, 19]), whereas global existence of small data solutions
for p > 1 + 2/(n − α) for the wave equation with damping µ⟨x⟩−α⟨t⟩−β, if α, β > 0 and α + β < 1 has been derived
in [27].

3. Proof of Theorem 1

Let us remind a lemma on the blow-up dynamics for ordinary differential inequalities with polynomial nonlin-
earity. This result will play a fundamental role in our approach.

Lemma 1. Let p > 1, q ∈ R. Let F ∈ C2([0,T )), positive, satisfying

F̈(t) ≥ K1(t + R)−q(F(t))p for any t ∈ [T1,T ) (13)
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for some K1,R > 0, and T1 ∈ [0,T ). If

F(t) ≥ K0(t + R)a for any t ∈ [T0,T ), (14)

for some a ≥ 1 satisfying a > (q − 2)/(p − 1), and for some K0 > 0, T0 ∈ [0,T ), then T < ∞.
Moreover, let q ≥ p + 1 in (13). Then there exists a constant K0 = K0(K1) > 0 such that, if (14) holds

with a = (q − 2)/(p − 1) for some T0 ∈ [0,T ), then T < ∞.

Proof. The case a > (q−2)/(p−1) corresponds to Lemma 4 in [21]. Let a = (q−2)/(p−1). Following Lemma 2.1
in [26], our problem reduces to find K0 such that (14) holds and the function G(s) = (T0 + 1)−aF((T0 + 1)s + 1)
blows up. One has

G̈(s) ≥ K1⟨s⟩−q(G(s))p,

G(s) ≥ K̃0⟨s⟩
q−2
p−1 ,

respectively, with K̃0 = K0 min{1; (1 + R)/(1 + T0)}. It follows with a possibly larger constant K0 that Ġ is
positive, so that from G̈(s) ≥ K1K̃ p−1

0 ⟨s⟩−2(G(s)) one has G(s) ≥ ⟨s⟩K̃
p−1
0 K2 . For large K0, the exponent a:=K̃ p−1

0 K1
satisfies a > (q − 2)/(p − 1), and we may conclude the proof. These ideas are contained in [9].

Transforming problem (1) into (5) Theorem 1 follows as a consequence of the next proposition. Here we fol-
low [26], taking into account of the time-dependence of the nonlinear term.

Proposition 1. Let f ∈ C2(Rn) and g ∈ C1(Rn) be nonnegative, compactly supported, such that f + g . 0. Assume
that u ∈ C2([0,T ) × Rn) is the maximal (with respect to the time interval) solution to

utt − △u = ⟨t⟩−(p−1)|u|p,
u(0, x) = f (x),
ut(0, x) = g(x).

(15)

If p ≤ p2(n), with p2(n) as in (4), then T < ∞.

Let R > 0 be such that supp f , supp g ⊂ B(R). Therefore, supp u(t, ·) ⊂ B(R + t). Without loss of generality we
assume R = 1. Let us define

F(t):=
∫
Rn

u(t, x) dx.

Thanks to the finite speed of propagation of u and by Hölder’s inequality

F̈(t) = ⟨t⟩−(p−1)
∫
Rn
|u(t, x)|p dx = ⟨t⟩−(p−1)

∫
B(⟨t⟩)
|u(t, x)|p dx ≳ ⟨t⟩−(n+1)(p−1) |F(t)|p. (16)

In order to apply Lemma 1 we need to establish that F(t) is positive. For this reason we consider the functions

ϕ1(x):=
∫

S n−1
ex·ω dω, ψ1(t, x):=ϕ1(x)e−t

and
F1(t):=

∫
Rn

u(t, x)ψ1(t, x) dx.

It follows that
F̈(t) ≳ ⟨t⟩−(p−1) |F1(t)|p

(∫
B(1+t)

(ψ1(t, x))
p

p−1 dx
)−(p−1)

.

Let us estimate the last integral. Recalling that ψ1(t, x) = e−tϕ1(x) we see that∫
B(K)

(ψ1(t, x))
p

p−1 dx ≤ C(K, A, p)⟨t⟩−A
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for any fixed K < 1 + t and A > 0. By using

ϕ1(x) ≲ |x|−
n−1

2 e|x| as |x| → ∞

(see [2], pages 184,185), we get for large t and K the estimate∫
B(1+t)\B(K)

(ψ1(t, x))
p

p−1 dx ≲
∫ t+1

K
⟨ρ⟩n−1− (n−1)p

2(p−1) e
p

p−1 (ρ−t) dρ.

Putting
α:=n − 1 − (n − 1)p/(2(p − 1)),

we have ∫ t+1

K
⟨ρ⟩αe

p
p−1 (ρ−t) dρ ≤

p − 1
p

e
p

p−1 (2 + t)α −
α(p − 1)

p

∫ t+1

K
e

p
p−1 (ρ−t)

⟨ρ⟩α−1 dρ.

If α ≥ 0, i.e. p ≥ 2, then we may immediately conclude∫ t+1

K
⟨ρ⟩αe

p
p−1 (ρ−t) dρ ≲ ⟨t⟩α. (17)

The same estimate holds if α < 0, i.e. p ∈ (1, 2), since we may write(
1 +

α(p − 1)
p(1 + K)

) ∫ t+1

K
⟨ρ⟩αe

p
p−1 (ρ−t) dρ ≲ ⟨t⟩α

and for large K and t we turn to (17). As a conclusion

F̈(t) ≳ ⟨t⟩−n(p−1)+(n−1) p
2 |F1(t)|p.

To estimate |F1(t)|p the sign of the nonlinear term comes into play. More precisely, the following result holds for
any smooth solution to utt − ∆u = G(t, x, u) with positive G.

Lemma 2. [Lemma 2.2 in [26]] There exists a positive constant t0 such that it holds

F1(t) ≳
1
2

(1 − e−2t)
∫
Rn

(
f (x) + g(x)

)
ϕ1(x) dx + e−2t

∫
Rn

f (x)ϕ1(x) dx (18)

for t ≥ t0.

In particular, due to our assumption on f and g, it holds F1(t) > c > 0. Therefore, we proved

F̈(t) ≳ ⟨t⟩−n(p−1)+(n−1) p
2 = ⟨t⟩−

n+1
2 p+n. (19)

Integrating twice we obtain

F(t) ≳ ⟨t⟩max{− n+1
2 p+n+2,1} + tḞ(0) + F(0) ≳ ⟨t⟩max{− n+1

2 p+n+2,1}, (20)

since Ḟ(0) ≥ 0 and F(0) ≥ 0.

3.1. The subcritical case
Recalling (16) we may apply the first part of Lemma 1 once we have one of the following conditions:

−
n + 1

2
p + n + 2 >

(n + 1)(p − 1) − 2
p − 1

, (21)

1 >
(n + 1)(p − 1) − 2

p − 1
. (22)

Condition (21) corresponds to p < p0(n+ 2), whereas condition (22) corresponds to p < p∞(n), hence, we derived
p < max{p0(n + 2), p∞(n)}.
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3.2. Critical case in 1d

First, let n = 1 and p = 3. By (16) it follows (13) with q = 4. Setting (20) into (16) leads to

F̈(t) ≳ ⟨t⟩−4 F(t)3 ≳ ⟨t⟩−1.

Integrating twice implies F(t) ≳ ⟨t⟩ ln⟨t⟩. Therefore, for any K0 > 0 there exists T0 > 0 such that (14) holds
with a = 1. The proof follows from Lemma 1.

3.3. Critical case in 2d

By (16) and (20) we have again F̈(t) ≳ ⟨t⟩−1. Consequently, the conclusion follows.

3.4. Critical case in n dimensions with n ≥ 3
We notice that p2(n) = p0(n + 2) < 2. Due to the lack of C2 regularity of solutions we shall prove a blow-up

behaviour for the spherical mean of u, that is, for

ũ(t, r) =
1
ωn

∫
|ω|=1

u(t, rω) dS ω.

This mean satisfies the differential inequality (see [14])

ũtt − ∆ũ ≥ ⟨t⟩−(p−1)|ũ|p.

We can assume that u is radial. Following [26] we consider the Radon transform of u on the hyper-planes orthog-
onal to a fixed ω ∈ Rn:

Ru(t, ρ):=
∫

x·w=ρ
u(t, x) dS x,

where dS x is the Lebesgue measure of {x : x · w = ρ}. One can see that Ru is independent of w and that

Ru(t, ρ) = cn

∫ ∞
|ρ|

u(t, r) (r2 − ρ2)
n−3

2 r dr. (23)

We will assume that ρ ≥ 0. Since Ru satisfies

∂2
t Ru − ∂2

ρRu = ⟨t⟩−(p−1) R(|u|p)

and f ≥ 0, g ≥ 0, it follows

Ru(t, ρ) ≥
1
2

∫ t

0
⟨s⟩−(p−1)

∫ ρ+(t−s)

ρ−(t−s)
R(|u|p)(s, ρ1) dρ1 ds.

Since supp R(|u|p)(s, ·) ⊂ B(s + 1), following [26] we may estimate

Ru(t, ρ) ≥
1
2

∫ t−ρ−1
2

0
⟨s⟩−(p−1)

∫
R

R(|u|p)(s, ρ1) dρ1 ds

=
1
2

∫ t−ρ−1
2

0
⟨s⟩−(p−1)

∫
Rn
|u(s, y)|p dy ds =

1
2

∫ t−ρ−1
2

0
F̈(s) ds.

Recalling (19) we get

Ru(t, ρ) ≥
1
2

∫ t−ρ−1
2

0
⟨s⟩−

n+1
2 p+n ds.

Since p = p2(n) ≤ 2 it holds
Ru(t, ρ) ≳ (1 + t − ρ)−

n+1
2 p+n+1. (24)
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Coming back to (23) and recalling that supp u(t, ·) ⊂ B(1 + t), since r + ρ ≤ 2r in the integral, we may estimate

Ru(t, ρ) = cn

∫ 1+t

ρ

u(t, r) r(r + ρ)
n−3

2 (r − ρ)
n−3

2 dr ≤ cn2
[n−3]+

2

∫ 1+t

ρ

u(t, r) r
n−1

2 (r − ρ)
n−3

2 dr . (25)

The operator T : Lp(R)→ Lp(R), which is defined by

T f (τ):=
1

|1 + t − τ|
n−1

2

∫ 1+t

τ

f (r) |r − τ|
n−3

2 dr for any τ ∈ R,

is bounded. Therefore, if we put

f (r) =

|u(t, r)| r
n−1

p if r ≥ 0,
0 if r ≤ 0,

so that f (r)p = |u(t, r)|p rn−1 for r ≥ 0, then we get∫ 1+t

0

( 1

|1 + t − ρ|
n−1

2

∫ 1+t

ρ

|u(t, r)| r
n−1

p (r − ρ)
n−3

2 dr
)p

dρ ≲
∫ ∞

0
|u(t, r)|p rn−1 dr = C

∫
Rn
|u(t, x)|p dx .

Due to p ≤ 2 and r ≥ ρ it holds r
n−1

p ≥ r
n−1

2 ρ(n−1)
(

1
p−

1
2

)
, so that, by (25), we conclude∫ 1+t

0

(Ru(t, ρ))p

|1 + t − ρ|
n−1

2 p
ρ(n−1)−(n−1) p

2 dρ ≲
∫
Rn
|u(t, x)|p dx.

Thanks to (24) we get ∫
Rn
|u(t, x)|p dx ≳

∫ 1+t

0
(1 + t − ρ)−

n+1
2 p2+ n+3

2 p ρ(n−1)−(n−1) p
2 dρ.

Recalling that p = p2(n) we may use
n + 1

2
p2 −

n + 3
2

p = 1,

and obtain ∫
Rn
|u(t, x)|p dx ≳

∫ 1+t

0
(1 + t − ρ)−1 ρ(n−1)−(n−1) p

2 dρ ≳ ⟨t⟩(n−1)−(n−1) p
2 ln⟨t⟩.

Thus,

F̈(t) ≳ ⟨t⟩−(p−1)
∫
Rn
|u|p dx ≳ ⟨t⟩(n−1)−(n+1) p

2 +1 ln⟨t⟩,

hence,
F(t) ≳ ⟨t⟩(n+1)−(n−1) p

2 ln⟨t⟩.

Similarly to the case n = 1 the end of the proof follows by Lemma 1.

4. Proof of Theorem 2

Let p, q ∈ [1,∞]. As in [17] we define

∥ f ∥(p,q):=
∥∥∥ f (rω) r

n−1
p
∥∥∥

Lp
r ([0,∞),Lq

ω(S n−1)).

It holds ∥ f ∥(p,p) = ∥ f ∥Lp and Hölder’s inequality

∥ f1 f2∥(p,q) ≲ ∥ f1∥(p1,q1) ∥ f2∥(p2,q2) (26)
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is valid if
1
p
=

1
p1
+

1
p2
≤ 1,

1
q
=

1
q1
+

1
q2
≤ 1.

Moreover, since S n−1 is compact, it holds

∥ f ∥(p,q1) ≲ ∥ f ∥(p,q2) for any q2 ≥ q1. (27)

Let i, j = 1, 2 with i , j. We introduce the vector fields

Γ = (D, L0, L j,Ωi j), D = (∂t, ∂ j), L0 = ⟨t⟩∂t + x · ∇,

L j = ⟨t⟩∂ j + x j∂t, Ωi j = xi∂ j − x j∂i,

and the norms
∥ f ∥Γ,s,(p,q) =

∑
|α|≤s

∥Γα f ∥(p,q),

∥ f ∥Γ,s,p = ∥ f ∥Γ,s,(p,p),

∥ f ∥Γ,s,∞ =
∑
|α|≤s

∥Γα f ∥∞.

To a given α the following relations hold with suitable aβ and bβ:

[□,Γα] =
∑
|β|≤|α|−1

aβ Γβ□, (28)

[D,Γα] =
∑
|β|≤|α|−1

bβ ΓβD. (29)

By using arguments from [16] one has the following Sobolev-type inequalities in these generalized Sobolev spaces:

∥w(t, ·)∥∞ ≲ ⟨t⟩−
n−1

2 ∥w(t, ·)∥Γ,s,2 if s > n/2, (30)

∥w(t, ·)∥∞ ≲ ⟨t⟩1−
n−1

2
(
∥w(t, ·)∥Γ,s,2 + ∥Dw(t, ·)∥Γ,s,2

)
if s + 1 > n/2, (31)

∥w(t, ·)∥q ≲ ⟨t⟩−(n−1)
(

1
2−

1
q

)
∥w(t, ·)∥Γ,s,2 if 2 ≤ q < ∞ ,

1
q
≥

1
2
−

s
n
≥ 0, (32)

for any t > 0 and any w(t, ·) such that the right-hand sides are well-defined. The previous statements can be found
in [30].

In these spaces energy estimates are given by

∥Du∥Γ,s,2 ≲ ∥∇u0∥Γ,s,2 + ∥u1∥Γ,s,2 +

∫ t

0
∥ f (τ, x)∥Γ,s,2 dτ, s ∈ N (33)

for solutions to the Cauchy problem for the inhomogeneous wave equation
utt − △u = f (t, x), t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn.

(34)

Indeed, we may combine (28), (29) with the classical energy estimate

∥Du∥2 ≲ ∥∇u0∥2 + ∥u1∥L2 +

∫ t

0
∥ f (τ, x)∥L2 dτ.

It is also necessary to estimate ∥u∥Γ,s,2. Here the space dimension n = 2 comes into play.
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Lemma 3. Let n = 2, and u be the solution to (34). Then, for any ϵ > 0 there exists a constant δ(ϵ) > 0,
satisfying δ(ϵ)→ 0 as ϵ → 0, such that

∥u(t, ·)∥Γ,s,2 ≲ ∥u0∥Γ,s,2 + tδ∥u1∥Γ,s,(1+ϵ,2) +

∫ t

0
(t − τ)δ ∥ f (τ, ·)∥Γ,s,(1+ϵ,2) dτ.

Proof. Due to (28) it suffices to consider the case s = 0. First, let f ≡ 0. Following [17], by using the change of
variables x = ty, we may estimate

∥u(t, ·)∥2 ≲ ∥u0∥2 + t2∥G∥H−1(R2
y ) , where G(y) = u1(ty).

Recalling that

∥G∥H−1 = sup
v∈H1,v,0

|
∫
R2 G(y)v(y) dy|

∥v∥H1
,

by virtue of (26)-(27) and Sobolev embeddings it holds

∥Gv∥L1 ≲ ∥G∥(q,2) ∥v∥(q′,2) ≲ ∥G∥(q,2) ∥v∥q′ ≲ ∥G∥(q,2) ∥v∥H1 ,

where q = 1 + ϵ with some ϵ ∈ (0, 1). Since

∥G∥(q,2) ≲ t−
n
q ∥u1∥(q,2),

summarizing, we proved that
∥u(t, ·)∥2 ≲ ∥u0∥2 + t2(1− 1

1+ϵ )∥u1∥(1+ϵ,2).

The case f . 0 follows by Duhamel’s principle.

Now we come back to the semilinear problem. For any T > 0, we introduce the space X(T ) with norm

∥u∥X(T ):= sup
t∈[0,T ]

(
⟨t⟩−δ∥u∥Γ,1,2 + ∥Du∥Γ,1,2

)
,

where δ is given by Lemma 3. For any w ∈ X(T ) let u = S [w] be the solution to

utt − △u = ⟨t⟩−(p−1)|w|p, u(0, x) = u0(x), ut(0, x) = u1(x)

with compactly supported data. Thanks to Lemma 3 for s = 1 we may estimate

∥u(t, ·)∥Γ,1,2 ≲ ∥u0∥Γ,1,2 + tδ∥u1∥Γ,1,(1+ϵ,2) +

∫ t

0
(t − τ)δ

∥∥∥⟨τ⟩−(p−1)|w(τ, ·)|p
∥∥∥
Γ,1,(1+ϵ,2) dτ.

Since
[∂τ, ⟨τ⟩α] = α

1
⟨τ⟩
⟨τ⟩α, [L0, ⟨τ⟩

α] = α⟨τ⟩α, [L j, ⟨τ⟩
α] = α

x j

⟨τ⟩
⟨τ⟩α,

thanks to the finite speed of propagation, i.e. |x| ≲ ⟨t⟩ on supp u, we get

∥u(t, ·)∥Γ,1,2 ≲ ∥u0∥Γ,1,2 + tδ∥u1∥Γ,1,(1+ϵ,2) +

∫ t

0
(t − τ)δ ⟨τ⟩−(p−1)

∥∥∥|w(τ, ·)|p
∥∥∥
Γ,1,(1+ϵ,2) dτ.

Now we may estimate ∥∥∥|w(τ, ·)|p
∥∥∥
Γ,1,(1+ϵ,2) ≲ ∥|w|

p−1∥(q̄,∞) ∥w(τ, ·)∥Γ,1,2,

where q̄(ϵ) ∈ (2,∞) is given by
1

1 + ϵ
=

1
2
+

1
q̄
.
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Let γ(ϵ):=2/q̄ = (1 − ϵ)/(1 + ϵ). Since p > 2, it holds γ + 1 < p. Then

∥|w(τ, ·)|p−1∥(q̄,∞) ≲ ∥w(τ, ·)∥p−1−γ
∞ ∥w(τ, ·)∥γ(2,∞).

Applying Sobolev embeddings on the unit sphere S 1 leads to

∥w(τ, ·)∥(2,∞) ≲ ∥w(τ, ·)∥H1 ≤ ∥w(τ, ·)∥2 + ∥Dw(τ, ·)∥2.

Thanks to (31) we have
∥w(τ, ·)∥∞ ≲ ⟨τ⟩

1
2
(
∥w(τ, ·)∥Γ,1,2 + ∥Dw(τ, ·)∥Γ,1,2

)
.

Therefore, taking into account that w ∈ X(T ) we conclude∫ t

0
(t − τ)δ ⟨τ⟩−(p−1)

∥∥∥|w(τ, ·)|p
∥∥∥
Γ,1,(1+ϵ,2) dτ ≲ ∥w∥pX(T )

∫ t

0
(t − τ)δ ⟨τ⟩−(p−1)+pδ+ p−(1+γ)

2 dτ.

Since δ(ϵ)→ 0 and γ(ϵ)→ 1 as ϵ → 0, for any p > 2, one can find a sufficiently small ϵ such that

−(p − 1) + pδ +
p − (1 + γ)

2
< −1.

To estimate ∥Du∥Γ,1,2 we apply (33). Now∥∥∥|w(τ, ·)|p
∥∥∥
Γ,1,2 ≲ ∥|w(τ, ·)|p−1∥2+ϵ1 ∥w(τ, ·)∥Γ,1,q1

for some ϵ1 > 0, where q1(ϵ1) is such that
1
2
=

1
2 + ϵ1

+
1
q1
.

Sobolev embeddings yield
∥w(τ, ·)∥Γ,1,q1 ≲ ∥w(τ, ·)∥Γ,1,2 + ∥Dw(τ, ·)∥Γ,1,2.

On the other hand, since p > 2, we have

∥|w(τ, ·)|p−1∥2+ϵ1 ≤ ∥w(τ, ·)∥p−1
(2+ϵ1)(p−1) ≲ ⟨τ⟩

−

(
1
2−

1
(2+ϵ1)(p−1)

)
(p−1)
∥w(τ, ·)∥p−1

Γ,1,2 ≤ ∥w(τ, ·)∥p−1
Γ,1,2.

In turn, this gives ∫ t

0
⟨τ⟩−(p−1)

∥∥∥|w(τ, ·)|p
∥∥∥
Γ,1,2 dτ ≲ ∥w∥pX(T )

∫ t

0
⟨τ⟩−(p−1)+pδ dτ.

Since p > 2, it is sufficient to fix ϵ such that δ(ϵ) satisfies p(1 − δ) > 2.
Summarizing, we proved that

∥u(t, ·)∥Γ,1,2 ≲ ∥u0∥Γ,1,2 + ⟨t⟩δ∥u1∥Γ,1,(1+ϵ,2) + ⟨t⟩δ∥w∥
p
X(T ),

∥Du(t, ·)∥Γ,1,2 ≲ ∥∇u0∥Γ,1,2 + ∥u1∥Γ,1,2 + ∥w∥
p
X(T ).

Recalling that initial data are compactly supported, we derive

∥u∥X(T ) ≲
(
∥u0∥Γ,1,2 + ∥Du0∥Γ,1,2 + ∥u1∥Γ,1,(1+ϵ,2) + ∥u1∥Γ,1,2

)
+ ∥w∥pX(T ).

By a standard argument, this estimate guarantees that with small data the operator S [w] has a unique fixed point,
that is the required solution.
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5. Proof of Theorem 3

Remark 1. In the statement of Theorem 3 we may relax the assumptions of compact support of the initial data.
More precisely, we will prove that for any p > p0(5) and for any κ ≥ (3 − p)/(p − 1) if p < 2, or κ > 1 if p ≥ 2,
there exists ε0 > 0 such that if (v0, v1) ∈ C2(R3) × C1(R3) are radial, namely, v0 = v0(|x|), v1 = v1(|x|), and

⟨r⟩κ+1(|v0(r) + v1(r)| + ⟨r⟩|v′0(r) + v′1(r)|
)
+ ⟨r⟩κ

(
|v0(r)| + ⟨r⟩|v′0(r)| + ⟨r⟩2|v′′0 (r)|

)
< ε, (35)

for some ε < ε0, then (1) admits a (radial) global (in time), solution v ∈ C([0,∞) × R3) ∩ C2([0,∞) × (R3 \ {0})).
We set r = |x| in (35).

Remark 2. We may also replace the nonlinear term |u|p in (1) by f (u), where f ∈ C1 is an even function satisfy-
ing | f (h)(u)| ≲ |u|p−h for h = 0, 1. In particular, it holds

f (0) = 0, | f (u) − f (v)| ≲ |u − v|(|u|p−1 + |v|p−1). (36)

To fulfill our objective we apply to (5) a technique introduced by Asakura [1] and developed in different works, in
particular in [15]. For the sake of simplicity, let v0 = 0 and let g:=u1 = v1. Then condition (35) becomes

|g(h)(r)| ≤ ε⟨r⟩−(κ+1+h) for h = 0, 1. (37)

We extend g to negative values of r by defining g(r):=g(−r) for any r < 0. Then, by symmetry, we rewrite (5) asutt − urr −
2
r

ur = ⟨t⟩−(p−1)|u|p, t > 0, r ∈ R,

u(0, r) = 0, ut(0, r) = g(r), r ∈ R.
(38)

Definition 1. We say that u(t, |x|) = u(t, r) is a radial global (in time) solution to (38) if u ∈ C([0,∞) × R),
ru ∈ C1([0,∞) × R), r2u ∈ C2([0,∞) × R) andr2utt − (r2urr + 2r ur) = r2⟨t⟩−(p−1)|u|p, t > 0, r ∈ R,

u(0, r) = 0, ut(0, r) = g(r), r ∈ R.

Remark 3. Any solution to (38) in the sense of Definition 1 gives a C([0,∞)×R3)∩C2([0,∞)× (R3 \{0})) solution
to (5) and in turn (1).

5.1. The linear equation

Definition 2. Let us consider utt − urr −
2
r

ur = 0, t > 0, r ∈ R,

u(0, r) = 0, ut(0, r) = g(r), r ∈ R.
(39)

We say that u ∈ C([0,∞) × R) is a solution to (39) if ru ∈ C1([0,∞) × R), r2u ∈ C2([0,∞) × R) andr2utt − (r2urr + 2r ur) = 0, t > 0, r ∈ R,
u(0, r) = 0, ut(0, r) = g(r), r ∈ R.

(40)

We see that r2u ∈ C2([0,∞) × R), ru ∈ C1([0,∞) × R), and u ∈ C([0,∞) × R) give sufficient regularity for
solutions to the equation in (40). Indeed, we have r2urr + 2rur = ∂rr(r2u) − 2u − 2rur ∈ C([0,∞) × R). Hence,
r2utt ∈ C([0,∞) × R), too. According to Definition 2 the function

ulin(t, r) =
∫ 1

−1
Hg(t + rσ) dσ with Hg(ρ):=

ρg(ρ)
2
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is the solution to (39). This result can be found in [2], but we rewrite the computation for completeness. Indeed,
for any H = H(ρ), H ∈ C1, we put

v(t, r):=
1
r

∫ t+r

t−r
H(ρ) dρ =

∫ 1

−1
H(t + rσ) dσ. (41)

For any r , 0 it holds

vt =

∫ 1

−1
H′(t + rσ) dσ =

1
r
(
H(t + r) − H(t − r)

)
, (42)

vtt =
1
r
(
H′(t + r) − H′(t − r)

)
, (43)

vr =

∫ 1

−1
σH′(t + rσ) dσ =

1
r
(
H(t + r) + H(t − r)

)
−

1
r

v, (44)

vrr = −
1
r2

(
H(t + r) + H(t − r)

)
+

1
r
(
H′(t + r) − H′(t − r)

)
+

1
r2 v −

1
r

vr

=
1
r
(
H′(t + r) − H′(t − r)

)
−

2
r

vr.
(45)

In particular, v solves the equation in (40) for any r , 0. Moreover, r2v ∈ C2([0,∞)×R), and v solves the equation
in (40) for any r ∈ R, as one may immediately check by multiplying (42)-(44) by r and (43)-(45) by r2. We remark
that v(0, r) = 0 if H is odd. In this latter case, rvt(0, r) = 2H(r). In particular, this proves that ulin solves (39).

For our convenience we also compute

∂r(rv) = v + rvr = H(t + r) + H(t − r), (46)

∂2
r (r2v) = ∂r(rv) + r∂2

r (rv) = H(t + r) + H(t − r) + r
(
H′(t + r) − H′(t − r)

)
. (47)

For any fixed κ > 1, we introduce the Banach space

Xκ:=
{
u ∈ C([0,∞),R), u is even in r : ∂r(ru) ∈ C([0,∞),R), ∥u∥Xκ < ∞

}
with the norm

∥u∥Xκ :=
{
⟨t + |r|⟩ ⟨t − |r|⟩κ−1u

}
+
{
⟨r⟩−1⟨t + |r|⟩ ⟨t − |r|⟩κ−1∂r(ru)

}
.

Theorem 4. Suppose that (37) holds for some κ > 1. Then

∥ulin∥Xκ ≤ Cε

for a suitable constant C > 0.

Proof. We notice that
|H(h)

g (ρ)| ≤ ε⟨ρ⟩−κ−h for h = 0, 1.

Thanks to (46) we immediately derive

|∂r(rulin)| =
∣∣∣Hg(t + r) + Hg(t − r)

∣∣∣ ≲ ε ⟨t − |r|⟩−κ.

We distinguish two cases.
If t ≥ 2|r|, then ⟨t ± |r|⟩ ≃ ⟨t⟩ and we get

|∂r(rulin)| ≲ ε ⟨t − |r|⟩−(κ−1)⟨t + |r|⟩−1 ≲ ε ⟨t − |r|⟩−(κ−1)⟨t + |r|⟩−1 ⟨r⟩,

where in the last inequality we used the trivial estimate 1 ≤ ⟨r⟩.
If t ≤ 2|r|, then ⟨t + |r|⟩ ≤ 3⟨r⟩. Therefore,

|∂r(rulin)| ≲ ε ⟨t − |r|⟩−κ ⟨t + |r|⟩−1 ⟨r⟩ ≲ ε ⟨t − |r|⟩−(κ−1) ⟨t + |r|⟩−1 ⟨r⟩,
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where in the last inequality we use the trivial estimate ⟨t − |r|⟩−1 ≤ 1.
In order to estimate

∥∥∥⟨t + |r|⟩⟨t − |r|⟩κ−1ulin
∥∥∥

L∞t L∞r
we observe that

|ulin(t, r)| ≲
ε

r

∫ t+r

t−r
⟨ρ⟩−κ dρ =

1
|r|

C ε

∫ t+|r|

t−|r|
⟨ρ⟩−κ dρ.

If t ≥ 2|r|, then ⟨t ± |r|⟩ ≃ ⟨t⟩. Hence,

|ulin(t, r)| ≃ ε⟨t − |r|⟩−(κ−1) ⟨t + |r|⟩−1.

If t ≤ 2|r|, then we also distinguish two cases. If |r| ≤ 1, then ⟨t + |r|⟩⟨t − |r|⟩κ−1 ≃ 1 and it is sufficient to estimate

|ulin(t, r)| ≤
∫ 1

−1
Hg(t + rσ) dσ ≤ C.

On the other hand, if t ≤ 2|r| and |r| ≥ 1, then ⟨t + |r|⟩ ≤ 3⟨r⟩ and |r| ≃ ⟨r⟩. Therefore,

|ulin(t, r)| ≲
1
|r|
ε

∫ t+|r|

t−|r|
⟨ρ⟩−κ dρ ≃

1
⟨r⟩

ε ⟨t − |r|⟩−(κ−1)

≲ ε ⟨t + |r|⟩−1 ⟨t − |r|⟩−(κ−1),

thanks to κ > 1. This concludes the proof that ∥ulin∥Xκ ≤ Cε.

5.2. Duhamel’s principle and basic nonlinear estimates

For any u ∈ Xκ let

Lu(t, r):=
∫ t

0
⟨s⟩−(p−1)

∫ 1

−1
Hu[s](t − s + rσ) dσ ds =

1
r

∫ t

0
⟨s⟩−(p−1)

∫ t−s+r

t−s−r
Hu[s](ρ) dρ ds,

where
Hu[s](ρ):=

ρ f (u(s, ρ))
2

. (48)

We denote by Hu[s]′(ρ) the derivative of Hu[s](ρ) with respect to ρ, considering s as a parameter.
Let us consider f (u(s, ρ)) and ρ∂ρ f (u(s, ρ)). If u ∈ Xκ, recalling that rur = ∂r(ru) − u, then we may estimate

| f (u(s, ρ))| ≲ ∥u∥pXκ ⟨s + |ρ|⟩
−p ⟨s − |ρ|⟩−p(κ−1),

⟨ρ⟩−1 |ρ ∂ρ f (u(s, ρ))| ≲ ∥u∥pXκ ⟨s + |ρ|⟩
−p ⟨s − |ρ|⟩−p(κ−1),

Having in mind (48), it follows, in particular, that

|Hu[s](ρ)| + |Hu[s]′(ρ)| ≲ ∥u∥pXκ ⟨s + |ρ|⟩
−p ⟨s − |ρ|⟩−p(κ−1)⟨ρ⟩. (49)

Proposition 2. Let u ∈ Xκ be even with respect to r. Then Lu ∈ Xκ and r2Lu ∈ C2([0,∞) × R). Moreover, Lu is
even with respect to r and satisfies

r2
(
∂2

t − ∂
2
r

)
Lu − 2r∂rLu = ⟨t⟩−(p−1) r2 f (u), t > 0, r ∈ R (50)

with initial data g ≡ 0.

Proof. From the continuity of Hu[s](ρ) (which follows from u ∈ Xκ ⊂ C), it follows that Lu ∈ Xκ, i.e. Lu, ∂r(rLu) ∈
C. Being u even with respect to r, and f even in u, we get that Hu[s] is odd for any s. It follows that Lu is even.
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We notice that

∂tLu =
∫ t

0
⟨s⟩−(p−1)

∫ 1

−1
∂tHu[s](t − s + rσ) dσ ds + ⟨t⟩−(p−1)

∫ 1

−1
Hu[t](rσ) dσ

=
1
r

∫ t

0
⟨s⟩−(p−1) (Hu[s](t − s + r) − Hu[s](t − s − r)

)
ds,

∂2
t Lu =

1
r

∫ t

0
⟨s⟩−(p−1) (Hu[s]′(t − s + r) − Hu[s]′(t − s − r)

)
ds +

1
r
⟨t⟩−(p−1) (Hu[t](r) − Hu[t](−r)

)
=

1
r

∫ t

0
⟨s⟩−(p−1) (Hu[s]′(t − s + r) − Hu[s]′(t − s − r)

)
ds + ⟨t⟩−(p−1) f (u(t, r)).

In particular, we gain ∂2
t Lu ∈ C. Recalling (45), we see that Lu solves (50) and we get the continuity of the

r-derivatives for r2Lu.

In order to prove global (in time) existence trough contraction mapping principle we shall prove the following
statement.

Theorem 5. Let p > p0(5) and let

3 − p
p − 1

≤ κ ≤ 2(p − 1) if p ∈ (p0(5), 2), or 1 < κ ≤ 2(p − 1) if p ≥ 2. (51)

If u ∈ Xκ, then

∥Lu∥Xκ ≲ ∥u∥
p
Xκ

; (52)

∥Lu − Lv∥Xκ ≲ ∥u − v∥Xκ
(
∥u∥p−1

Xκ
+ ∥u∥p−1

Xκ

)
. (53)

Recalling the definition of the involved norm, for proving (52) it suffices to show

|Lu(t, r)| ≲ ⟨t + |r|⟩−1⟨t − |r|⟩−(κ−1)∥u∥pXκ , (54)

|∂r(rLu)(t, r)| ≲ ⟨t + |r|⟩−1⟨t − |r|⟩−(κ−1)⟨r⟩∥u∥pXκ . (55)

Since Lu is even in r, it suffices to deal with r > 0. Proceeding as in (41), from (49) we have

|Lu(t, r)| ≲
1
r

∫ t

0
⟨s⟩−(p−1)

∫ t−s+r

t−s−r
|Hu[s](ρ)| dρ ds

≲
1
r
∥u∥pXκ

∫ t

0
⟨s⟩−(p−1)

∫ t−s+r

t−s−r
⟨s + |ρ|⟩−p ⟨s − |ρ|⟩−p(κ−1)⟨ρ⟩ dρ ds.

By using (46) we get

|∂r(rLu)(t, r)| ≤
∫ t

0
⟨s⟩−(p−1)

∣∣∣Hu[s](t − s + r) + Hu[s](t − s − r)
∣∣∣ ds

≲ ∥u∥pXκ
∑
±

∫ t

0
⟨s⟩−(p−1) ⟨s + |t − s ± r|⟩−p⟨s − |t − s ± r|⟩−p(κ−1)⟨t − s ± r⟩ds.

Consequently, our aim reduces to estimate the quantities

I0(t, r):=
∫ t

0
⟨s⟩−(p−1)

∫ t−s+r

t−s−r
⟨s + |ρ|⟩−p ⟨s − |ρ|⟩−p(κ−1)⟨ρ⟩ dρ ds,

I1,±(t, r):=
∫ t

0
⟨s⟩−(p−1) ⟨s + |t − s ± r|⟩−p⟨s − |t − s ± r|⟩−p(κ−1)⟨t − s ± r⟩ds.
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Similarly, to prove (53) it suffices to show

|Lu(t, r) − Lv(t, r)| ≲ ⟨t + |r|⟩−1⟨t − |r|⟩−(κ−1)∥u − v∥Xκ
(
∥u∥p−1

Xκ
+ ∥v∥p−1

Xκ

)
, (56)

|∂r(rLu)(t, r) − ∂r(rLv)(t, r)| ≲ ⟨t + |r|⟩−1⟨t − |r|⟩−(κ−1)⟨r⟩∥u − v∥Xκ
(
∥u∥p−1

Xκ
+ ∥v∥p−1

Xκ

)
. (57)

We have

|Lu(t, r) − Lv(t, r)| ≲
1
r

∫ t

0
⟨s⟩−(p−1)

∫ t−s+r

t−s−r

∣∣∣Hu[s](ρ) − Hv[s](ρ)
∣∣∣ dρ ds.

Moreover, from (36) and (48), it follows that∣∣∣Hu[s](ρ) − Hv[s](ρ)
∣∣∣ ≲ |ρ||u(s, ρ) − v(s, ρ)|

(
|u(s, ρ)|p−1 + |v(s, ρ)|p−1).

As a conclusion
|Lu(t, r) − Lv(t, r)| ≲ ∥u − v∥Xκ

(
∥u∥p−1

Xκ
+ ∥v∥p−1

Xκ

)
I0(t, r).

Similarly, we get
|∂r(rLu(t, r) − rLv(t, r))| ≲ ∥u − v∥Xκ

(
∥u∥p−1

Xκ
+ ∥v∥p−1

Xκ

)∑
±

I1,±(t, r).

If t ≤ r, then we may simplify our approach, thanks to the following observation.

Remark 4. If t ≤ r, then it holds

Lu(t, r) =
1
r

∫ t

0
⟨s⟩−(p−1)

∫ r+(t−s)

r−(t−s)
Hu[s](ρ) dρ ds.

Indeed, ∫ r−(t−s)

(t−s)−r
Hu[s](ρ) dρ = 0,

being Hu[s], defined in (48) odd, thanks to the assumption that f (u) is even with respect to u, and thanks to the fact
that u is even with respect to r. Therefore, we may replace I0(t, r) by

I′0(t, r):=
∫ t

0
⟨s⟩−(p−1)

∫ r+(t−s)

r−(t−s)
⟨s + |ρ|⟩−p ⟨s − |ρ|⟩−p(κ−1)⟨ρ⟩ dρ ds.

The estimates for I0, I1,± and I′0 are based on the following lemma.

Lemma 4. Let p > p0(5) and let

3 − p
p − 1

≤ κ ≤ 2(p − 1) if p ∈ (p0(5), 2), (58)

1 < κ ≤ 2 if p = 2, (59)
1

p − 1
≤ κ ≤ 2(p − 1) if p > 2. (60)

Then

I(ξ) =
∫ ξ

−ξ

⟨η + ξ⟩⟨η − ξ⟩−(p−1)⟨η⟩−p(κ−1) dη ≲ ⟨ξ⟩−(κ−p). (61)

Remark 5. The interval (58), i.e. (3 − p)(p − 1)−1 ≤ κ ≤ 2(p − 1), is nonempty if, and only if, p > p0(5). If p > 2,
then the interval (60), i.e. (p − 1)−1 ≤ κ ≤ 2(p − 1) is nonempty for any p > 2.
We observe that this latter range contains the range (1, 2(p − 1)] required in the assumption (51).
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Proof. We split I(ξ) in I1(ξ) =
∫ ξ/2

−ξ/2
. . . dη and I2(ξ) as the remaining integral.

Let η ∈ [0, ξ/2]. Then we have ⟨ξ⟩ ≃ ⟨η + ξ⟩ ≃ ⟨ξ − η⟩. Hence,

I1(ξ) ≲ ⟨ξ⟩2−p
∫ ξ/2

0
⟨η⟩−p(κ−1) dη.

We get I1(ξ) ≲ ⟨ξ⟩−(κ−p) if

κ < 1 +
1
p

and − 3 + pκ ≥ κ − p,

κ = 1 +
1
p

and − 2 + p > κ − p,

κ > 1 +
1
p

and − 2 + p ≥ κ − p.

The first condition corresponds to the interval [3 − p
p − 1

, 1 +
1
p

)
,

which is nonempty for any p > p0(5). The second condition holds for any p > p0(5), therefore κ = 1 + 1/p is
admissible. The third condition corresponds to the interval(

1 +
1
p
, 2(p − 1)

]
,

which is nonempty for any p > p0(5). Gluing together the above three intervals we obtain the admissible range
in (58), i.e., [3 − p

p − 1
, 2(p − 1)

]
.

Now, let η ∈ [ξ/2, ξ]. We have ⟨η⟩ ≃ ⟨ξ⟩ ≃ ⟨ξ + η⟩. It follows that

I2(ξ) ≃ ⟨ξ⟩1−p(κ−1)
∫ ξ

ξ/2
⟨η − ξ⟩−(p−1) dη + ⟨ξ⟩−(p−1)−p(κ−1)

∫ ξ

ξ/2
⟨η − ξ⟩ dη = I2,1(ξ) + I2,2(ξ).

For any p > 1 we have
I2,2(ξ) ≲ ⟨ξ⟩−(p−1)−p(κ−1)+2,

in particular, I2,2 ≤ ⟨ξ⟩
−(κ−p) for any

κ ≥
3 − p
p − 1

. (62)

The estimate of I2,1 depends on the range of p:

I2,1(ξ) ≲ ⟨ξ⟩1−p(κ−1) if p > 2,

I2,1(ξ) ≲ ⟨ξ⟩1−p(κ−1) ln⟨ξ⟩ if p = 2,

I2,1(ξ) ≲ ⟨ξ⟩1−p(κ−1)−(p−1)+1 if p < 2.

For p < 2 the assumption κ ≥
3 − p
p − 1

gives directly I2,1(ξ) ≤ ⟨ξ⟩−(κ−p). For p = 2, we get 1 − p(κ − 1) < p − κ if and

only if κ > 1. For p > 2, we get 1 − p(κ − 1) ≤ p − κ if and only if κ ≥
1

p − 1
.

Therefore, combining the lower bound on κ obtained for I2,1 with the upper bound for κ derived for I1, we
obtain (59) if p = 2 and (60) if p > 2.
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Proposition 3. Let p > p0(5) and κ be as in (51). It holds

I0(t, r) ≲

r ⟨t + r⟩−κ if t ≥ 2r or r ≤ 1,
⟨t − r⟩−(κ−1) if r ≤ t ≤ 2r and r ≥ 1.

Moreover,
I′0(t, r) ≲ ⟨t − r⟩−(κ−1) if t ≤ r and r ≥ 1.

In particular, the estimates (54) and (56) hold.

Proof. First, let us estimate I0. Being |t − s − r| < t − s + r we have

I0(t, r) ≤ 2
∫ t

0
⟨s⟩−(p−1)

∫ t−s+r

max{0,t−s−r}
⟨s + ρ⟩−p ⟨s − ρ⟩−p(κ−1)⟨ρ⟩ dρ ds.

Now we use the change of variables ξ = s + ρ, η = ρ − s. Since ρ ≥ 0, we have |η| ≤ ξ. Moreover, ξ = s + ρ ≤
s + (t − s − r) = t + r and ξ ≥ s +max{0, t − s − r} ≥ (t − r)+. Finally, we arrive at

I0(t, r) ≲
∫ t+r

(t−r)+
⟨ξ⟩−p

∫ ξ

−ξ

⟨η + ξ⟩⟨η − ξ⟩−(p−1)⟨η⟩−p(κ−1) dη dξ =
∫ t+r

(t−r)+
⟨ξ⟩−pI(ξ) dξ (63)

with I(ξ) as in Lemma 4. From Lemma 4 we conclude

I0(t, r) ≲
∫ t+r

(t−r)+
⟨ξ⟩−κdξ. (64)

In the following we shall use different ideas in different zones of the (t, r) plane.

5.2.1. The zone t ≥ 2r
Here, we have in [(t − r), (t + r)] the equivalence ⟨ξ⟩ ≃ ⟨t + r⟩, therefore, I0(t, r) ≲ r⟨t + r⟩−κ.

5.2.2. The zone r ≤ 1 and t ≤ 2r
In this zone it holds ⟨t + r⟩ ≃ 1. It is enough to show I0(t, r) ≲ r, which follows from (64) being κ ≥ 0.

5.2.3. The zone r ≥ 1 and r ≤ t ≤ 2r
If r ≤ t ≤ 2r, then from (64) we derive

I0(t, r) ≲
∫ t+r

t−r
⟨ξ⟩−κdξ ≲ ⟨t − r⟩−(κ−1),

where we used κ > 1.
Now, let us estimate I′0 for r ≥ 1 and t ≤ r. Applying the same change of variables to

I′0(t, r) =
∫ t

0
⟨s⟩−(p−1)

∫ r+(t−s)

r−(t−s)
⟨s + ρ⟩−p ⟨s − ρ⟩−p(κ−1)⟨ρ⟩ dρ ds

we obtain

I′0(t, r) ≲
∫ r+t

r−t
⟨ξ⟩−p

∫ ξ

r−t
⟨η + ξ⟩⟨η − ξ⟩−(p−1)⟨η⟩−p(κ−1) dη dξ .

Moreover, [r − t, ξ] ⊂ [−ξ, ξ]. From Lemma 4 we have

I0(t, r) ≲
∫ r+t

r−t
⟨ξ⟩−pI(ξ) dξ ≲

∫ r+t

r−t
⟨ξ⟩−κ dξ ≲ ⟨t − r⟩1−κ,

where we used again κ > 1. Finally, we prove (54). If t ≥ 2r or r ≤ 1, then from ⟨t + r⟩ ≥ ⟨t − r⟩ it follows

|Lu(t, r)| ≲ ⟨t + r⟩−κ∥u∥pXκ ≲ ⟨t + r⟩⟨t − r⟩−(κ−1).
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For r ≥ 1 and t ≤ 2r we have

|Lu(t, r)| ≲ ⟨r⟩−1 ⟨t − r⟩−(κ−1)∥u∥pXκ ≃ ⟨t + r⟩−1 ⟨t − r⟩−(κ−1)∥u∥pXκ .

The same arguments lead to (56).

Proposition 4. Let p > p0(5) and κ be as in (51). Then we have

I1,−(t, r) ≲

⟨t − r⟩−κ if t ≥ 2r,
⟨t − r⟩−(κ−1) if t ≤ 2r,

and I1,+ ≲ ⟨t + r⟩−κ. In particular, the estimates (55) and (57) hold.

Proof. We start with the estimate of I1,−.

5.2.4. The zone t ≥ 2r
Since t + r ≃ t − r and if s ∈ [t − r, t], then

s + |t − s − r| ≃ t − r.

Conversely, if s ∈ [0, t − r], then
s + |t − s − r| = s + t − s − r = t − r.

Therefore,

I1,− ≲ ⟨t − r⟩−p
∫ t

0
⟨s⟩−(p−1) ⟨s − |t − s − r|⟩−p(κ−1)⟨t − s − r⟩ds = ⟨t − r⟩−p(Q− + Q+),

where

Q− =
∫ t−r

0
⟨s⟩−(p−1) ⟨2s − t + r⟩−p(κ−1)⟨t − s − r⟩ds,

Q+ = ⟨t − r⟩−p(κ−1)
∫ t

t−r
⟨s⟩−(p−1) ⟨t − s − r⟩ds.

So, we may directly estimate

Q+ ≤ ⟨t − r⟩−p(κ−1)−(p−1)
∫ t

t−r
⟨t − s − r⟩dτ = ⟨t − r⟩−p(κ−1)−(p−1)

∫ 0

−r
⟨ρ⟩dρ

≲ ⟨t − r⟩−p(κ−1)−(p−1)+2.

Being κ ≥
3 − p
p − 1

we have the required estimate Q+ ≲ ⟨t − r⟩p−κ.

In order to estimate Q− we use Lemma 4. By the change of variables η =
t − r

2
− s, we have

Q− ≲
∫ t−r

2

− t−r
2

〈
η +

t − r
2

〉−(p−1)
⟨η⟩−p(κ−1)

〈
η −

t − r
2

〉
dη = I

( t − r
2

)
≲ ⟨t − r⟩p−κ. (65)

Together with the estimate of Q+ this gives I1,− ≲ ⟨t − r⟩−κ.
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5.2.5. The zone t ≤ 2r
We write I1,− = Q̃+ + Q̃−, where

Q̃− =
∫ (t−r)+

0
⟨s⟩−(p−1) ⟨t − r⟩−p⟨2s − t + r⟩−p(κ−1)⟨t − s − r⟩ds

= ⟨t − r⟩−p Q−,

Q̃+ =
∫ t

(t−r)+
⟨s⟩−(p−1) ⟨2s − t + r⟩−p⟨t − r)⟩−p(κ−1)⟨t − s − r⟩ds

= ⟨t − r⟩−p(κ−1)
∫ t

(t−r)+
⟨s⟩−(p−1) ⟨2s − t + r⟩−p ⟨t − s − r⟩ds = ⟨t − r⟩−p(κ−1) Q♯

+.

Since the estimate (65) holds for any t ≥ r we may directly conclude Q̃− ≲ ⟨t − r⟩−κ. Since p > 1, in order to gain
Q̃+ ≲ ⟨t − r⟩−(κ−1), it suffices to estimate Q♯

+ by a constant.
Since 2s − (t − r) ≥ s − (t − r) we have

Q♯
+ ≲
∫ ∞

0
⟨s⟩−(p−1)⟨s − (t − r)⟩−(p−1) ds

≲
∫ (t−r)/2

0
⟨s⟩−2(p−1) ds +

∫ ∞
(t−r)/2

⟨t − s − r⟩−2(p−1) ds ≤ 2
∫ +∞

0
⟨s⟩−2(p−1) ds.

This quantity is finite taking into consideration 2(p − 1) > 2(p0(5) − 1) > 1.

The estimate for I1,+ is easier to obtain. Indeed

I1,+ = ⟨t + r⟩−p
∫ t

0
⟨s⟩−(p−1) ⟨2s − t − r⟩−p(κ−1)⟨t − s + r⟩ds,

due to t + r − s ≥ 0. After the change of variables η =
t + r

2
− s we are in position to apply Lemma 4 and conclude

I1,+ ≲ ⟨t + r⟩−p
∫ t+r

2

− t+r
2

〈
η +

t + r
2

〉−(p−1)
⟨η⟩−p(κ−1)

〈
η −

t + r
2

〉
dη = ⟨t + r⟩−pI

( t + r
2

)
≲ ⟨t + r⟩−κ.

Now, we can gain (56), and similarly (57). If t ≥ 2r, then we use ⟨t + r⟩ ≃ ⟨t − r⟩ and ⟨r⟩ ≥ 1 to conclude

|∂r(rLu)(t, r)| ≲ ∥u∥pXκ
∑
±

I1,± ≲ ∥u∥
p
Xκ
⟨t − r⟩−κ ≲ ⟨r⟩⟨t + r⟩−1⟨t − r⟩−κ−1∥u∥pXκ .

If t ≤ 2r, then ⟨r⟩ ≃ ⟨t + r⟩. Hence,

|∂r(rLu)(t, r)| ≲ ∥u∥pXκ
∑
±

I1,± ≲ ∥u∥
p
Xκ
⟨t − r⟩−(κ−1) ≲ ⟨r⟩⟨t + r⟩−1⟨t − r⟩−κ−1∥u∥pXκ .

5.3. Existence theorem

Theorem 6. Let p > p0(5) and κ as in (51). There exists a constant ε0 > 0 such that if (37) holds with ε < ε0,
then the Cauchy problem (38) admits a unique global (in time) small data solution u(t, r) in the sense of Definition
1. In particular, u ∈ Xκ and the following decay estimate holds:

|u(t, r)| + |∂ru(t, r)| ≲ ⟨t + |r|⟩−1 ⟨t − |r|⟩−(κ−1) . (66)

Proof. Let us define the sequence
u0 = ulin, un+1 = ulin + Lun.
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By using Theorems 4 and 5 we get

∥un+1∥Xκ ≤ ∥u
lin∥Xκ +C1∥un∥

p
Xκ
≤ C0ε +C1∥un∥

p
Xκ
,

∥un+1 − un∥Xκ ≤ C2∥un − un−1∥Xκ

(
∥un∥

p−1
Xκ
+ ∥un−1∥

p−1
Xκ

)
with suitable constant C0,C1,C2 > 0. For ε0 < (2C0C1/(p−1)

1 )−1, we find via induction argument

∥un∥Xκ ≤ 2∥ulin∥Xκ ≤ 2C0ε0.

In turn, for ε0 < (2p+1C2Cp−1
0 ), this gives

∥un+1 − un∥Xκ ≤ 2−n∥u1 − u0∥Xκ .

We can conclude that {un}n is a Cauchy sequence. It converges in Xκ to the solution to u = ulin + Lu. According to
Proposition 2 this solution is the required one. The decay estimates follow from the definition of Xκ.

Remark 6. From the decay estimate (66) we may derive an estimate for the solution to the scale-invariant damping
Cauchy problem (1). Coming back, by the inverse Liouville transformation, we find

|v(t, |x|)| ≤ ⟨t⟩−1⟨t + |x|⟩−1⟨t − |x|⟩−(κ−1).

The worst situation is close to the light cone, where we only have

|v(t, |x|)| ≤ ⟨t⟩−2.

The decay behavior ⟨t⟩−2 in the 3-dimensional case can be interpreted as ⟨t⟩−
(n+2)−1

2 : the same decay for the wave
equation in dimension n + 2. This motivates the shift of 2-dimensions of the critical exponent p0(n) → p0(n + 2).
The same effect can be observed in [5] for others space dimensions.

6. Expectations for µ , 2

The same type of transformation we used in the treatment of (1) allows us to transform the Cauchy problem
with scale-invariant mass and dissipation

vtt − △v +
µ

1 + t
vt +

m
4(1 + t)2 v = |v|p, t > 0, x ∈ Rn,

v(0, x) = v0(x), x ∈ Rn,

vt(0, x) = v1(x), x ∈ Rn,

(67)

where µ > 0 and m ∈ R, to
utt − △u +

µ(2 − µ) + m
4(1 + t)2 u = ⟨t⟩−

µ
2 (p−1)|u|p, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn,

(68)

where we set u(t, x) = ⟨t⟩
µ
2 v(t, x), u0 = v0 and u1 = v1 + (µ/2)v0.

In particular, in the special case m = (µ − 2)µ, the equation in (68) becomes a wave equation with the nonlin-
earity ⟨t⟩−

µ
2 (p−1)|u|p. We may directly follow the proof of Theorem 1 to obtain a nonexistence result for this special

problem.

Theorem 7. Assume that v ∈ C2([0,T ) × Rn) is a solution to (67) with m = (µ − 2)µ and initial data (v0, v1) ∈
C2

c(Rn) × C1
c(Rn) such that v1, v0 ≥ 0, and (v0, v1) . (0, 0). If p ∈ (1, p̃µ(n)], then T < ∞, where

p̃µ(n) = max
{
p∞(n − 1 + µ/2); p0(n + µ)

}
.
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Remark 7. Let us compute p̃µ(n). The critical exponent p0(n + µ) may be written as

p0(n + µ) =
q +
√

q2 + 4(q − 1)
2

, where q = q(n + µ) = 1 +
2

n − 1 + µ
= p∞(n − 1 + µ).

To determine p̃µ(n) we remark that p0(n + µ) ≥ r:=p∞(n − 1 + µ/2) if and only if√
q2 + 4(q − 1) ≥ 2r − q.

Being q < r for any µ > 0 we may take the squared powers:

q2 + 4(q − 1) ≥ 4r2 − 4rq + q2,

that is, q − 1 ≥ r(r − q), explicitly,

2
n − 1 + µ

≥
n + 1 + µ/2
n − 1 + µ/2

( 2
n − 1 + µ/2

−
2

n − 1 + µ

)
=

µ(n + 1 + µ/2)
(n − 1 + µ/2)2(n − 1 + µ)

,

that is,
µ(n − 3) + 2(n − 1)2 ≥ 0.

It follows that p̃µ(n) = p0(n + µ) for any n ≥ 3, p̃µ(1) = p∞(µ/2), and

p̃µ(2) =

p∞(1 + µ/2) if µ ≥ 2,
p0(2 + µ) if µ ∈ [0, 2].

The statements of Theorem 7 are consistent with known results for the classical semilinear wave equation (i.e.
µ = 0) and with Theorem 1 (i.e. µ = 2), which are the only two cases in which m = 0.

Proof (Proof of Theorem 7). We only sketch the differences to the proof of Theorem 1. For the sake of brevity
we only consider the subcritical case. It is clear that we obtain

F̈(t) ≳ ⟨t⟩−(n+µ/2)(p−1)|F(t)|p,

F̈(t) ≳ ⟨t⟩−(n−1+µ/2)(p−1)+(n−1) p
2 |F1(t)|p.

By virtue of Lemma 2 we derive again F1(t) > 0, and integrating twice the estimate for F̈(t), we derive F(t) ≳ ⟨t⟩a,
where

a = max
{
−

n − 1 + 2µ
2

p + n + 2, 1
}
.

Setting q = (n + µ/2)(p − 1) we immediately obtain the blow-up in finite time if 1 > (q − 2)/(p − 1), i.e. p <
p∞(n − 1 + µ/2), or if

−
n − 1 + 2µ

2
p + n + 2 >

q − 2
p − 1

= n +
µ

2
−

2
p − 1

,

i.e. p < p0(n + µ).

We may conjecture that global existence of small data solutions holds for some range of p > p̃µ(n). For this reason
we propose as critical exponent pcrit the value p̃µ(n).

Remark 8. Let µ ∈ (0, 2) in (3). We may expect that the critical exponent pµ(n) is not larger than p̃µ(n) due to the
fact that the model in (67) with m = (µ− 2)µ has an additional negative mass term with respect to the model in (3).
Moreover, we know that the critical exponent has to be not smaller than p∞(n − (1 − µ)+). Therefore, we expect
that

p∞(n − (1 − µ)+) ≤ pµ(n) ≤ p̃µ(n).
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If n ≥ 2, then we may replace p̃µ(n) = p0(n + µ), whereas if n = 1, we replace p̃µ(1) = p∞(µ/2), i.e. we expect
that pµ(1) ∈ [1 + 2/µ, 1 + 4/µ]. Indeed, if n = 1 our considerations are restricted to µ ∈ (0, 5/3), since we already
know that the critical exponent is 3 for µ ≥ 5/3.

On the other hand, if n ≥ 3 and µ ∈ (2, n + 2) in (3), then we may expect that the critical exponent pµ(n) is
not smaller than p̃µ(n), due to the fact that the model in (67) with m = (µ − 2)µ has an additional positive mass
term with respect to the model in (3). Moreover, we know that the critical exponent may not be smaller than p∞(n).
Therefore, we expect that

max
{
p0(n + µ); p∞(n)

}
≤ pµ(n) ≤ p0(n + 2).

7. Concluding remarks and open problems

Remark 9. In the statement of Theorem 2 we may weaken the assumption on the data from (v̄0, v̄1) ∈ C2
c × C

1
c

to (v̄0, v̄1) ∈ H2 × H1, compactly supported.

Remark 10. In the paper [5] the first two authors deal with the odd dimensional cases n ≥ 5. They prove the
global existence of small data solutions to (1) for some admissible range of p ∈ (p0(n+2), p1). This yields together
with the statement from Theorem 1, that p0(n + 2) is the critical exponent for (1) in odd space dimensions n ≥ 5,
too. It remains to analyze the case of even n ≥ 4. But the authors expect the shift p0(n) → p0(n + 2) in all space
dimensions n ≥ 4, too.

Remark 11. Prof. H.Takamura (Future University Hakodate, Japan) has given the authors the following hint:
He is able to prove the estimate of the lifespan of solutions of semilinear wave equations with the scaling invariant
damping term of (1). He will use the method from [22] for the sub-critical case and the method from [23] for
the critical case. This is possible because we apply in Section 3 the usual functional method to semilinear wave
equations without damping but with time dependent coefficient in the semilinear term. It just shifts the critical
exponent p0(n) to p0(n + 2). The following life-span estimates can be proved for n ≥ 2:

T (ε) ≤ exp(Cε−p(p−1)) for p = p0(n + 2),

T (ε) ≤ Cε−
2p(p−1)
γ(p,n+2) for 1 < p < p0(n + 2).

In the second life-span estimate the parameter γ(p, n + 2) is defined by

γ(p, n + 2) = 2 + (n + 3)p − (n + 1)p2.
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