The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARλ 3 full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARλ 3, respectively. In PPARα this ligand occupies a new pocket whose filling is allowed by the ligand-induced switching of the F273 side chain from a closed to an open conformation. The comparison between this pocket and the corresponding cavity in PPARλ 3 provides a rationale for the different activation of the ligand towards PPARα and PPARλ 3, suggesting a novel basis for ligand design.

Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode

LOIODICE, Fulvio;TORTORELLA, Paolo;LAGHEZZA, ANTONIO;
2016-01-01

Abstract

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARλ 3 full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a structure-based virtual screening approach that let us identify a novel PPAR pan-agonist with a very attractive activity profile and its crystal structure in the complex with PPARα and PPARλ 3, respectively. In PPARα this ligand occupies a new pocket whose filling is allowed by the ligand-induced switching of the F273 side chain from a closed to an open conformation. The comparison between this pocket and the corresponding cavity in PPARλ 3 provides a rationale for the different activation of the ligand towards PPARα and PPARλ 3, suggesting a novel basis for ligand design.
File in questo prodotto:
File Dimensione Formato  
Capelli-2016-Structural basis for PPAR partial.pdf

accesso aperto

Descrizione: Capelli_SR_2016
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/176294
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 52
social impact