Small interfering RNAs (siRNAs), play a vital role in epigenetics of plant virus-host plant interactions. It has been extensively studied at both the transcriptional and post-transcriptional levels. In plants, siRNAs initiate and manage gene silencing by directing DNA methylation and/or histone methylation. In Arabidopsis, the ~24 nt siRNAs directs DNA methylation (RNA-directed DNA methylation, RdDM) and chromatin remodeling at their target loci. Recent advances in highthroughput sequencing techniques has enabled thorough exploration of small RNAs populations and allow rapid analysis of massive datasets to assemble complete full-length genome sequence for different plant species. This large database of sequence information also allows identification of genome regions specifically matched by siRNAs that likely differ among tolerant, resistant or susceptible hosts and advance epigenetic studies on diseased plants. Resistance to Citrus tristeza virus (CTV), the most severe virus affecting Citrus spp., associated with a single dominant gene locus Ctv occurring in Poncirus trifoliata while all Citrus spp. are considered susceptible. This locus contains 22 putative genes, but their regulation and mechanism for resistance remains unknown. In our study, CTV was graft-inoculated on Carrizo citrange (Poncirus trifoliata x C. sinensis (I think) ) and C. aurantium (sour orange) seedlings, and the population of siRNA characterized by high-throughput sequencing using an ILLUMINA platform. The Ctv-derived siRNA (~2% of the total short reads) were dominated in both hosts by the 24-nt. However, CTV infection caused an increase in accumulation of 24-nt siRNA sequences homologous to the Ctv gene in Carrizo but it decreased in sour orange. Distribution of the 24nt along the Ctv gene locus (282Kb) had a clearly different distribution between the two host. The predominant hot spot of siRNA in Carrizo mapped in the putative gene Ctv-20, whereas in sour orange it associated to the intergenic region between the putative genes Ctv-11 and Ctv-12, where a Copia-like retrotransposon C is located. This distribution profile was conserved for each species between CTV-infected and uninfected plants but, as previously mentioned, the frequency of the 24nt siRNAs was altered by the presence of the virus. We supposed that the different profile of 24nt between the two host in the locus ctv is due to RdDM mechanisms. To demonstrate the methylation status of the resistance locus we performed a bisulfite treatment of DNA. in which unmethylated cytosine was converted to uracile, while methylated cytosine did not react. A methylcytosines mapping was carried out on Ctv-11 and Ctv-12 sequences. By specific software were found 5 different CpG islands in the Copia-likeretrotransposon sequence and 42 primer pair were designed. The PCR analyses have been carried out using MSP and BSP primers followed by combined bisulfite restriction analysis (COBRA).

CITRUS TRISTEZA VIRUS RESISTANCE GENE LOCUS: SMALL RNA PROFILE AND PRELIMINARY EPIGENETIC STUDIES

LOCONSOLE, GIULIANA;MONTEMURRO, CINZIA;Fanelli V;DE GIOVANNI, Claudio
2011-01-01

Abstract

Small interfering RNAs (siRNAs), play a vital role in epigenetics of plant virus-host plant interactions. It has been extensively studied at both the transcriptional and post-transcriptional levels. In plants, siRNAs initiate and manage gene silencing by directing DNA methylation and/or histone methylation. In Arabidopsis, the ~24 nt siRNAs directs DNA methylation (RNA-directed DNA methylation, RdDM) and chromatin remodeling at their target loci. Recent advances in highthroughput sequencing techniques has enabled thorough exploration of small RNAs populations and allow rapid analysis of massive datasets to assemble complete full-length genome sequence for different plant species. This large database of sequence information also allows identification of genome regions specifically matched by siRNAs that likely differ among tolerant, resistant or susceptible hosts and advance epigenetic studies on diseased plants. Resistance to Citrus tristeza virus (CTV), the most severe virus affecting Citrus spp., associated with a single dominant gene locus Ctv occurring in Poncirus trifoliata while all Citrus spp. are considered susceptible. This locus contains 22 putative genes, but their regulation and mechanism for resistance remains unknown. In our study, CTV was graft-inoculated on Carrizo citrange (Poncirus trifoliata x C. sinensis (I think) ) and C. aurantium (sour orange) seedlings, and the population of siRNA characterized by high-throughput sequencing using an ILLUMINA platform. The Ctv-derived siRNA (~2% of the total short reads) were dominated in both hosts by the 24-nt. However, CTV infection caused an increase in accumulation of 24-nt siRNA sequences homologous to the Ctv gene in Carrizo but it decreased in sour orange. Distribution of the 24nt along the Ctv gene locus (282Kb) had a clearly different distribution between the two host. The predominant hot spot of siRNA in Carrizo mapped in the putative gene Ctv-20, whereas in sour orange it associated to the intergenic region between the putative genes Ctv-11 and Ctv-12, where a Copia-like retrotransposon C is located. This distribution profile was conserved for each species between CTV-infected and uninfected plants but, as previously mentioned, the frequency of the 24nt siRNAs was altered by the presence of the virus. We supposed that the different profile of 24nt between the two host in the locus ctv is due to RdDM mechanisms. To demonstrate the methylation status of the resistance locus we performed a bisulfite treatment of DNA. in which unmethylated cytosine was converted to uracile, while methylated cytosine did not react. A methylcytosines mapping was carried out on Ctv-11 and Ctv-12 sequences. By specific software were found 5 different CpG islands in the Copia-likeretrotransposon sequence and 42 primer pair were designed. The PCR analyses have been carried out using MSP and BSP primers followed by combined bisulfite restriction analysis (COBRA).
2011
978-88-904570-2-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/138436
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact