A series of ester derivatives of annulated tetrahydroazocines, namely 2,3,6,11-tetrahydro-1H-azocino[4,5-b]indoles (5-10), 2,3,6,7-tetrahydro-1H-azocino[5,4-b]indoles (11-14), and 4,7,8,9-tetrahydro-1H-pyrrolo[2,3-d]azocines (15-18), synthesized through an efficient 6-->8 membered ring expansion procedure, were investigated for their acetylcholinesterase (AChE) inhibitory activities. Most of the compounds acted as AChE inhibitors in vitro, with IC(50) values ranging from 5 to 40 microM. The most potent compounds 11 and 15, both as racemic mixtures, proved selective toward AChE, exhibiting selectivity ratios versus butyrylcholinesterase (BuChE) of ca. 15 and more than 20, respectively. Structure-activity studies highlighted, among other factors, lipophilicity as a property modulating the AChE inhibition potency, as shown by a reasonable parabolic correlation between pIC(50) and experimental 1-octanol/water partition coefficient (logP), which described the prevailing behavior of the examined compounds (r(2)=0.665). Molecular docking simulations using the X-ray crystal structure of AChE from Torpedo californica suggested possible binding modes of the tetrahydroazocine ester derivatives 11 and 15.
Ester derivatives of annulated tetrahydroazocines: a new class of selective acetylcholinesterase inhibitors
DE CANDIA, MODESTO;CATTO, Marco;ALTOMARE, Cosimo Damiano
2006-01-01
Abstract
A series of ester derivatives of annulated tetrahydroazocines, namely 2,3,6,11-tetrahydro-1H-azocino[4,5-b]indoles (5-10), 2,3,6,7-tetrahydro-1H-azocino[5,4-b]indoles (11-14), and 4,7,8,9-tetrahydro-1H-pyrrolo[2,3-d]azocines (15-18), synthesized through an efficient 6-->8 membered ring expansion procedure, were investigated for their acetylcholinesterase (AChE) inhibitory activities. Most of the compounds acted as AChE inhibitors in vitro, with IC(50) values ranging from 5 to 40 microM. The most potent compounds 11 and 15, both as racemic mixtures, proved selective toward AChE, exhibiting selectivity ratios versus butyrylcholinesterase (BuChE) of ca. 15 and more than 20, respectively. Structure-activity studies highlighted, among other factors, lipophilicity as a property modulating the AChE inhibition potency, as shown by a reasonable parabolic correlation between pIC(50) and experimental 1-octanol/water partition coefficient (logP), which described the prevailing behavior of the examined compounds (r(2)=0.665). Molecular docking simulations using the X-ray crystal structure of AChE from Torpedo californica suggested possible binding modes of the tetrahydroazocine ester derivatives 11 and 15.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.