Let the nonlinear equation $D_s\dot x + \lambda \nabla_x V(x,s) = 0$ be defined in a non-complete Riemannian manifold $\m$ and consider those ones of its solutions which join any couple of fixed points in $\m$ in a fixed arrival time $T > 0$. If $V$ has a quadratic growth with respect to $x$ and if $\m$ has a convex boundary, then a ``best constant'' $\bar\lambda(T) > 0$ exists such that if $0 \le\lambda < \bar\lambda(T)$ the problem admits at least one solution while infinitely many ones exist if the topology of $\m$ is not trivial.

A quadratic Bolza-type problem in a non-complete Riemannian manifold

CANDELA, Anna Maria;
2003-01-01

Abstract

Let the nonlinear equation $D_s\dot x + \lambda \nabla_x V(x,s) = 0$ be defined in a non-complete Riemannian manifold $\m$ and consider those ones of its solutions which join any couple of fixed points in $\m$ in a fixed arrival time $T > 0$. If $V$ has a quadratic growth with respect to $x$ and if $\m$ has a convex boundary, then a ``best constant'' $\bar\lambda(T) > 0$ exists such that if $0 \le\lambda < \bar\lambda(T)$ the problem admits at least one solution while infinitely many ones exist if the topology of $\m$ is not trivial.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/77097
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact