Nowadays sensors are deployed everywhere in order to support real-time data applications. They periodically gather information along a number of attribute dimensions (e.g., temperature and humidity). Applications typically require monitoring these data, fast computing aggregates, predicting unknown data, or issuing alarms. To this aim, this paper introduces a recently defined spatio-temporal pattern, called trend cluster, and its multiple applications to summarize, interpolate and detect outliers in sensor network data. As an example, we illustrate the application of trend cluster discovery to air climate data monitoring

Discovering trend clusters in sensor data streams

MALERBA, Donato;APPICE, ANNALISA
2014-01-01

Abstract

Nowadays sensors are deployed everywhere in order to support real-time data applications. They periodically gather information along a number of attribute dimensions (e.g., temperature and humidity). Applications typically require monitoring these data, fast computing aggregates, predicting unknown data, or issuing alarms. To this aim, this paper introduces a recently defined spatio-temporal pattern, called trend cluster, and its multiple applications to summarize, interpolate and detect outliers in sensor network data. As an example, we illustrate the application of trend cluster discovery to air climate data monitoring
2014
978-88-8467-874-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/71336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact