This paper presents a new approach for Handwritten Word Recognition based on Hidden Markov Model theory and the sliding window technique. The new approach uses specific singularity markers to support the recognition phase: the Static Marker and the Dynamic Marker. Moreover, different strategies for sliding window step are considered: Regular Step and Progressive Step. Experimental results showing the improvements obtained for basic word lexicon recognition are reported in the paper.

HMM-based Handwritten Word Recognition System by using Singularities

IMPEDOVO, Sebastiano;
2009-01-01

Abstract

This paper presents a new approach for Handwritten Word Recognition based on Hidden Markov Model theory and the sliding window technique. The new approach uses specific singularity markers to support the recognition phase: the Static Marker and the Dynamic Marker. Moreover, different strategies for sliding window step are considered: Regular Step and Progressive Step. Experimental results showing the improvements obtained for basic word lexicon recognition are reported in the paper.
2009
978-0-7695-3725-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/69757
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact