The detection of congested areas can play an important role in the development of systems of traffic management. Usually, the problem is investigated under two main perspectives which concern the representation of space and the shape of the dense regions respectively. However, the adoption of movement tracking technologies enables the generation of mobility data in a streaming style, which adds an aspect of complexity not yet addressed in the literature. We propose a computational solution to mine dense regions in the urban space from mobility data streams. Our proposal adopts a stream data mining strategy which enables the detection of two types of dense regions, one based on spatial closeness, the other one based on temporal proximity. We prove the viability of the approach on vehicular data streams in the urban space.

Mining Dense Regions from Vehicular Mobility in Streaming Setting

LOGLISCI, CORRADO;MALERBA, Donato
2014-01-01

Abstract

The detection of congested areas can play an important role in the development of systems of traffic management. Usually, the problem is investigated under two main perspectives which concern the representation of space and the shape of the dense regions respectively. However, the adoption of movement tracking technologies enables the generation of mobility data in a streaming style, which adds an aspect of complexity not yet addressed in the literature. We propose a computational solution to mine dense regions in the urban space from mobility data streams. Our proposal adopts a stream data mining strategy which enables the detection of two types of dense regions, one based on spatial closeness, the other one based on temporal proximity. We prove the viability of the approach on vehicular data streams in the urban space.
2014
978-3-319-08325-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/67917
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact