Several pieces of evidence have demonstrated the sigma-1 receptor (S1R) as a druggable protein with important therapeutic potentials, including neurodegeneration, cancer, and neuropathic pain. The density of S1R is altered in pathological processes so that its imaging is under study for diagnostic purposes. Thus, research has been focused on the development of S1R positron emission tomography (PET) radioligands, not only as diagnostic tools but also as powerful means to assist in the drug-development process. Herein, we comprehensively review the most important S1R PET radiotracers belonging to different classes that have been developed in the last two decades. Starting from the structural modifications impacting on the S1R affinity and selectivity, we report (i) the differences in metabolism and pharmacokinetics, (ii) the in vivo behavior in different animal models, (iii) the in vitro autoradiography outcomes, and (iv) the dosimetric profiles. The successful use of the best-performing S1R PET radiotracers in the characterization of novel S1R drugs is also reported together with the approaches to assess the potential for clinical translation. What emerges from this review is that, although the development of reliable PET agents appears to be extremely challenging, these radiotracers hold incredible potential and play a fundamental role in the exploitation of S1R in health and disease.
A Full-Spectrum Evaluation of Sigma-1 Receptor (S1R) Positron Emission Tomography (PET) Radioligands from Binding Affinity to Clinical Imaging
Mastropasqua, Francesco
;Abate, Carmen
2025-01-01
Abstract
Several pieces of evidence have demonstrated the sigma-1 receptor (S1R) as a druggable protein with important therapeutic potentials, including neurodegeneration, cancer, and neuropathic pain. The density of S1R is altered in pathological processes so that its imaging is under study for diagnostic purposes. Thus, research has been focused on the development of S1R positron emission tomography (PET) radioligands, not only as diagnostic tools but also as powerful means to assist in the drug-development process. Herein, we comprehensively review the most important S1R PET radiotracers belonging to different classes that have been developed in the last two decades. Starting from the structural modifications impacting on the S1R affinity and selectivity, we report (i) the differences in metabolism and pharmacokinetics, (ii) the in vivo behavior in different animal models, (iii) the in vitro autoradiography outcomes, and (iv) the dosimetric profiles. The successful use of the best-performing S1R PET radiotracers in the characterization of novel S1R drugs is also reported together with the approaches to assess the potential for clinical translation. What emerges from this review is that, although the development of reliable PET agents appears to be extremely challenging, these radiotracers hold incredible potential and play a fundamental role in the exploitation of S1R in health and disease.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


