In this paper, we present a Computer Aided Diagnosis that implements a supervised approach to discriminate vessels versus tubules that are two different types of structural elements in images of biopsy tissue. In particular, in this work we formerly describe an innovative preliminary step to segment region of interest, then the procedure to extract from them significant features and finally present and discuss the Back Propagation Neural Network binary classifier performance that shows Precision 91 % and Recall 91 %.

Neural Network Classification of Blood Vessels and Tubules Based on Haralick Features Evaluated in Histological Images of Kidney Biopsy

Bevilacqua, Vitoantonio;Pietroleonardo, Nicola;Triggiani, Vito;Gesualdo, Loreto;Rossini, Michele;Mastrofilippo, Nico
2015-01-01

Abstract

In this paper, we present a Computer Aided Diagnosis that implements a supervised approach to discriminate vessels versus tubules that are two different types of structural elements in images of biopsy tissue. In particular, in this work we formerly describe an innovative preliminary step to segment region of interest, then the procedure to extract from them significant features and finally present and discuss the Back Propagation Neural Network binary classifier performance that shows Precision 91 % and Recall 91 %.
2015
9783319220529
9783319220536
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/553128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact