Microbiome research has grown substantially over the past decade in terms of the range of biomes sampled, identified taxa, and the volume of data derived from the samples. In particular, experimental approaches such as metagenomics, metabarcoding, metatranscriptomics and metaproteomics have provided profound insights into the vast, hitherto unknown, microbial biodiversity. The ELIXIR Marine Metagenomics Community, initiated amongst researchers focusing on marine microbiomes, has concentrated on promoting standards around microbiome-derived sequence analysis, as well as understanding the gaps in methods and reference databases, and identifying solutions to the computational overheads of performing such analyses. Nevertheless, the methods used and the challenges faced are not confined to marine microbiome studies, but are broadly applicable to other biomes. Thus, expanding this Marine Metagenomics Community to a more inclusive ELIXIR Microbiome Community will enable it to encompass a broader range of biomes and link expertise across ‘omics technologies. Furthermore, engaging with a large number of researchers will improve the efficiency and sustainability of bioinformatics infrastructure and resources for microbiome research (standards, data, tools, workflows, training), which will enable a deeper understanding of the function and taxonomic composition of the different microbial communities.
Establishing the ELIXIR Microbiome Community
Fosso, Bruno;Pesole, Graziano;Santamaria, Monica;
2025-01-01
Abstract
Microbiome research has grown substantially over the past decade in terms of the range of biomes sampled, identified taxa, and the volume of data derived from the samples. In particular, experimental approaches such as metagenomics, metabarcoding, metatranscriptomics and metaproteomics have provided profound insights into the vast, hitherto unknown, microbial biodiversity. The ELIXIR Marine Metagenomics Community, initiated amongst researchers focusing on marine microbiomes, has concentrated on promoting standards around microbiome-derived sequence analysis, as well as understanding the gaps in methods and reference databases, and identifying solutions to the computational overheads of performing such analyses. Nevertheless, the methods used and the challenges faced are not confined to marine microbiome studies, but are broadly applicable to other biomes. Thus, expanding this Marine Metagenomics Community to a more inclusive ELIXIR Microbiome Community will enable it to encompass a broader range of biomes and link expertise across ‘omics technologies. Furthermore, engaging with a large number of researchers will improve the efficiency and sustainability of bioinformatics infrastructure and resources for microbiome research (standards, data, tools, workflows, training), which will enable a deeper understanding of the function and taxonomic composition of the different microbial communities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


