Software modeling education often lacks immediate and personalized feedback, making it challenging for novice learners to comprehend modeling principles. This paper continues our ongoing work on developing an AI-driven feedback mechanism to support UML diagram construction. Building on previous efforts, we improved the system by enhancing the RAG-LLM component within the existing UML Miner plugin. The system analyzes students’ modeling behavior and provides real-time, personalized guidance to support learning and improve modeling skills.

A RAG-Enhanced AI Feedback for UML Education

Ardimento, Pasquale
;
Scalera, Michele
2025-01-01

Abstract

Software modeling education often lacks immediate and personalized feedback, making it challenging for novice learners to comprehend modeling principles. This paper continues our ongoing work on developing an AI-driven feedback mechanism to support UML diagram construction. Building on previous efforts, we improved the system by enhancing the RAG-LLM component within the existing UML Miner plugin. The system analyzes students’ modeling behavior and provides real-time, personalized guidance to support learning and improve modeling skills.
2025
9783031992636
9783031992643
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/547743
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact