The aim of this paper is stating some existence and multiplicity results for critical points of the family of functionals which can be written as \[ J(u) = \int_\Omega A(x,u)|\nabla u|^p dx - \int_\Omega G(x,u) dx \] in the Banach space $X = W^{1,p}_0(\Omega)\cap L^\infty(\Omega)$, being $\Omega$ a bounded domain in $\R^N$.\\ Proven a suitable variant of condition $(C)$, a modified version of ``classical'' linking theorems apply by making use of a ``good'' decomposition of $W^{1,p}_0(\Omega)$ in a sequence of finite dimensional subspaces.

Multiple solutions of p-Laplace type equations

CANDELA, Anna Maria;
2008-01-01

Abstract

The aim of this paper is stating some existence and multiplicity results for critical points of the family of functionals which can be written as \[ J(u) = \int_\Omega A(x,u)|\nabla u|^p dx - \int_\Omega G(x,u) dx \] in the Banach space $X = W^{1,p}_0(\Omega)\cap L^\infty(\Omega)$, being $\Omega$ a bounded domain in $\R^N$.\\ Proven a suitable variant of condition $(C)$, a modified version of ``classical'' linking theorems apply by making use of a ``good'' decomposition of $W^{1,p}_0(\Omega)$ in a sequence of finite dimensional subspaces.
2008
1-890888-01-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/54281
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact