In this work we discuss stability and nondegeneracy properties of some special families of minimal hypersurfaces embedded in RmxRn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>m\times \mathbb {R}<^>n$$\end{document} with m,n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\ge 2$$\end{document}. These hypersurfaces are asymptotic at infinity to a fixed Lawson cone Cm,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{m,n}$$\end{document}. In the case m+n >= 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n\ge 8$$\end{document}, we show that such hypersurfaces are strictly stable and we provide a full classification of their bounded Jacobi fields, which in turn allows us to prove the non-degeneracy of such surfaces. In the case m+n <= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n\le 7$$\end{document}, we prove that such hypersurfaces have infinite Morse index.
The Jacobi operator of some special minimal hypersurfaces
Rizzi M.
2024-01-01
Abstract
In this work we discuss stability and nondegeneracy properties of some special families of minimal hypersurfaces embedded in RmxRn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>m\times \mathbb {R}<^>n$$\end{document} with m,n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\ge 2$$\end{document}. These hypersurfaces are asymptotic at infinity to a fixed Lawson cone Cm,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{m,n}$$\end{document}. In the case m+n >= 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n\ge 8$$\end{document}, we show that such hypersurfaces are strictly stable and we provide a full classification of their bounded Jacobi fields, which in turn allows us to prove the non-degeneracy of such surfaces. In the case m+n <= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n\le 7$$\end{document}, we prove that such hypersurfaces have infinite Morse index.| File | Dimensione | Formato | |
|---|---|---|---|
|
13-AR.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
504.35 kB
Formato
Adobe PDF
|
504.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
13-AR-postprint.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Copyright dell'editore
Dimensione
560.15 kB
Formato
Adobe PDF
|
560.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


