In this work we discuss stability and nondegeneracy properties of some special families of minimal hypersurfaces embedded in RmxRn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>m\times \mathbb {R}<^>n$$\end{document} with m,n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\ge 2$$\end{document}. These hypersurfaces are asymptotic at infinity to a fixed Lawson cone Cm,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{m,n}$$\end{document}. In the case m+n >= 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n\ge 8$$\end{document}, we show that such hypersurfaces are strictly stable and we provide a full classification of their bounded Jacobi fields, which in turn allows us to prove the non-degeneracy of such surfaces. In the case m+n <= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n\le 7$$\end{document}, we prove that such hypersurfaces have infinite Morse index.

The Jacobi operator of some special minimal hypersurfaces

Rizzi M.
2024-01-01

Abstract

In this work we discuss stability and nondegeneracy properties of some special families of minimal hypersurfaces embedded in RmxRn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>m\times \mathbb {R}<^>n$$\end{document} with m,n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\ge 2$$\end{document}. These hypersurfaces are asymptotic at infinity to a fixed Lawson cone Cm,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{m,n}$$\end{document}. In the case m+n >= 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n\ge 8$$\end{document}, we show that such hypersurfaces are strictly stable and we provide a full classification of their bounded Jacobi fields, which in turn allows us to prove the non-degeneracy of such surfaces. In the case m+n <= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+n\le 7$$\end{document}, we prove that such hypersurfaces have infinite Morse index.
File in questo prodotto:
File Dimensione Formato  
13-AR.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 504.35 kB
Formato Adobe PDF
504.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
13-AR-postprint.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 560.15 kB
Formato Adobe PDF
560.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/542723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact