The aim of this investigation was to prepare two solid mixtures containing a soluble polymorph of (+)-catechin and mucic (MUC) or tartaric (TAR) acids as new leavening agents. The solid mixtures were based on a polymorph of (+)-catechin, characterized through Powder X-ray Diffraction (PXRD) analysis and assayed in in vitro antioxidant and solubility assays. The dough samples were studied by dynamic rheological tests, while muffins were studied through Headspace Solid-Phase Microextraction (HS-SPME)/Gas Chromatography-Mass Spectrometry (GC-MS) analysis to identify volatile compounds, in vitro tests to evaluate antioxidant properties, and sensory analyses. TAR powder showed a solubility in water almost one order of magnitude increased with respect to commercial (+)-catechin (40.0 against 4.6 mg mL(-1)) and increased antioxidant performances. In particular, TAR showed total phenolic content (TPC) and total antioxidant capacity (TAC) values of 0.0298 +/- 0.021 and 0.0081 +/- 0.0009 meq CT/g, while MUC showed better results in terms of 2,2-diphenyl-1-picrylhydrazyl) acid (DPPH) and 2,2 '-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 0.518 +/- 0.015 and 0.112 +/- 0.010 mg/mL, respectively. MS analysis identified different compounds derived from the lipid oxidation process. Muffins obtained using both powders showed interesting outcomes regarding dough process and appreciable appearance/olfactory/taste/texture profiles. Muffins obtained from TAR-based mixture showed also a total phenolic content of 0.00175 meq CT/g muffin, and almost two times improved TAC and scavenger activity against DPPH radical. The formulated powders could be used as suitable health-promoting ingredients in the food industry.
Formulation of New Baking (+)-Catechin Based Leavening Agents: Effects on Rheology, Sensory and Antioxidant Features during Muffin Preparation
Leggio A.;Spizzirri U. G.;
2020-01-01
Abstract
The aim of this investigation was to prepare two solid mixtures containing a soluble polymorph of (+)-catechin and mucic (MUC) or tartaric (TAR) acids as new leavening agents. The solid mixtures were based on a polymorph of (+)-catechin, characterized through Powder X-ray Diffraction (PXRD) analysis and assayed in in vitro antioxidant and solubility assays. The dough samples were studied by dynamic rheological tests, while muffins were studied through Headspace Solid-Phase Microextraction (HS-SPME)/Gas Chromatography-Mass Spectrometry (GC-MS) analysis to identify volatile compounds, in vitro tests to evaluate antioxidant properties, and sensory analyses. TAR powder showed a solubility in water almost one order of magnitude increased with respect to commercial (+)-catechin (40.0 against 4.6 mg mL(-1)) and increased antioxidant performances. In particular, TAR showed total phenolic content (TPC) and total antioxidant capacity (TAC) values of 0.0298 +/- 0.021 and 0.0081 +/- 0.0009 meq CT/g, while MUC showed better results in terms of 2,2-diphenyl-1-picrylhydrazyl) acid (DPPH) and 2,2 '-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 0.518 +/- 0.015 and 0.112 +/- 0.010 mg/mL, respectively. MS analysis identified different compounds derived from the lipid oxidation process. Muffins obtained using both powders showed interesting outcomes regarding dough process and appreciable appearance/olfactory/taste/texture profiles. Muffins obtained from TAR-based mixture showed also a total phenolic content of 0.00175 meq CT/g muffin, and almost two times improved TAC and scavenger activity against DPPH radical. The formulated powders could be used as suitable health-promoting ingredients in the food industry.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.