: Bile acid malabsorption (BAM) is an important disorder of digestive pathophysiology as it generates chronic diarrhoea. This condition originates from intricate pathways involving bile acid synthesis and metabolism in the liver and gut, the composition of gut microbiota, enterohepatic circulation and key receptors as farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and the G-protein bile acid receptor-1 (GPBAR-1). Although symptoms can resemble those related to disorders of gut brain interaction, accurate diagnosis of BAM may greatly benefit the patient. The empiric diagnosis of BAM is primarily based on the clinical response to bile acid sequestrants. Specific tests including the 48-hour fecal bile acid test, serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19), and the 75Selenium HomotauroCholic Acid Test (SeHCAT) are not widely available. Nevertheless, lack of diagnostic standardization of BAM may account for poor recognition and delayed management. Beyond bile acid sequestrants, therapeutic approaches include the use of FXR agonists, FGF19 analogues, glucagon-like peptide-1 (GLP-1) receptor agonists, and microbiota modulation. These novel agents can best make their foray into the therapeutic armamentarium if BAM does not remain a diagnosis of exclusion. Ignoring BAM as a specific condition may continue to contribute to increased healthcare costs and reduced quality of life. Here, we aim to provide a comprehensive review of the pathophysiology, diagnosis, and management of BAM.
Advances in the pathophysiology, diagnosis and management of chronic diarrhoea from bile acid malabsorption: a systematic review
Khalil, Mohamad;Portincasa, Piero
2024-01-01
Abstract
: Bile acid malabsorption (BAM) is an important disorder of digestive pathophysiology as it generates chronic diarrhoea. This condition originates from intricate pathways involving bile acid synthesis and metabolism in the liver and gut, the composition of gut microbiota, enterohepatic circulation and key receptors as farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and the G-protein bile acid receptor-1 (GPBAR-1). Although symptoms can resemble those related to disorders of gut brain interaction, accurate diagnosis of BAM may greatly benefit the patient. The empiric diagnosis of BAM is primarily based on the clinical response to bile acid sequestrants. Specific tests including the 48-hour fecal bile acid test, serum levels of 7α-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19), and the 75Selenium HomotauroCholic Acid Test (SeHCAT) are not widely available. Nevertheless, lack of diagnostic standardization of BAM may account for poor recognition and delayed management. Beyond bile acid sequestrants, therapeutic approaches include the use of FXR agonists, FGF19 analogues, glucagon-like peptide-1 (GLP-1) receptor agonists, and microbiota modulation. These novel agents can best make their foray into the therapeutic armamentarium if BAM does not remain a diagnosis of exclusion. Ignoring BAM as a specific condition may continue to contribute to increased healthcare costs and reduced quality of life. Here, we aim to provide a comprehensive review of the pathophysiology, diagnosis, and management of BAM.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.