Mexiletine is the first choice drug in the treatment of non-dystrophic myotonias. However, 30% of patients experience little benefit from mexiletine due to poor tolerability, contraindications and limited efficacy likely based on pharmacogenetic profile. Safinamide inhibits neuronal voltage-gated sodium and calcium channels and shows anticonvulsant activity, in addition to a reversible monoamine oxidase-B inhibition. We evaluated the preclinical effects of safinamide in an animal model of Myotonia Congenita, the ADR (arrested development of righting response) mouse. In vitro studies were performed using the two intracellular microelectrodes technique in current clamp mode. We analyzed sarcolemma excitability in skeletal muscle fibers isolated from male and female ADR (adr/adr) and from Wild-Type (wt/wt) mice, before and after the application of safinamide and the reference compound mexiletine. In ADR mice, the maximum number of action potentials (N-spikes) elicited by a fixed current is higher with respect to that of WT mice. Myotonic muscles show an involuntary firing of action potential called after-discharges. A more potent activity of safinamide compared to mexiletine has been demonstrated in reducing N-spikes and the after-discharges in myotonic muscle fibers. The time of righting reflex (TRR) before and after administration of safinamide and mexiletine was evaluated in vivo in ADR mice. Safinamide was able to reduce the TRR in ADR mice to a greater extent than mexiletine. In conclusion, safinamide counteracted the abnormal muscle hyperexcitability in myotonic mice both in vitro and in vivo suggesting it as an effective drug to be indicated in Myotonia Congenita.
Preclinical study of the antimyotonic efficacy of safinamide in the myotonic mouse model
Canfora, Ileana;Altamura, Concetta;Desaphy, Jean-Francois;Boccanegra, Brigida;De Luca, Annamaria;Pierno, Sabata
2024-01-01
Abstract
Mexiletine is the first choice drug in the treatment of non-dystrophic myotonias. However, 30% of patients experience little benefit from mexiletine due to poor tolerability, contraindications and limited efficacy likely based on pharmacogenetic profile. Safinamide inhibits neuronal voltage-gated sodium and calcium channels and shows anticonvulsant activity, in addition to a reversible monoamine oxidase-B inhibition. We evaluated the preclinical effects of safinamide in an animal model of Myotonia Congenita, the ADR (arrested development of righting response) mouse. In vitro studies were performed using the two intracellular microelectrodes technique in current clamp mode. We analyzed sarcolemma excitability in skeletal muscle fibers isolated from male and female ADR (adr/adr) and from Wild-Type (wt/wt) mice, before and after the application of safinamide and the reference compound mexiletine. In ADR mice, the maximum number of action potentials (N-spikes) elicited by a fixed current is higher with respect to that of WT mice. Myotonic muscles show an involuntary firing of action potential called after-discharges. A more potent activity of safinamide compared to mexiletine has been demonstrated in reducing N-spikes and the after-discharges in myotonic muscle fibers. The time of righting reflex (TRR) before and after administration of safinamide and mexiletine was evaluated in vivo in ADR mice. Safinamide was able to reduce the TRR in ADR mice to a greater extent than mexiletine. In conclusion, safinamide counteracted the abnormal muscle hyperexcitability in myotonic mice both in vitro and in vivo suggesting it as an effective drug to be indicated in Myotonia Congenita.File | Dimensione | Formato | |
---|---|---|---|
Canfora Neurother 2024 in press.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
987.64 kB
Formato
Adobe PDF
|
987.64 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.