Autism spectrum disorder (ASD) affects social interaction and communication. Emerging evidence links ASD to gut microbiome alterations, suggesting that microbial composition may play a role in the disorder. This study employs explainable artificial intelligence (XAI) to examine the contributions of individual microbial species to ASD. By using local explanation embeddings and unsupervised clustering, the research identifies distinct ASD subgroups, underscoring the disorder's heterogeneity. Specific microbial biomarkers associated with ASD are revealed, and the best classifiers achieved an AU-ROC of 0.965 ± 0.005 and a AU-PRC of 0.967±0.008. The findings support the notion that gut microbiome composition varies significantly among individuals with ASD. This work's broader significance lies in its potential to inform personalized interventions, enhancing precision in ASD management and classification. These insights highlight the importance of individualized microbiome profiles for developing tailored therapeutic strategies for ASD.

Personalized identification of Autism-related bacteria in the gut microbiome using eXplainable Artificial Intelligence

Pierfrancesco Novielli;Donato Romano;Michele Magarelli;Domenico Diacono;Alfonso Monaco;Nicola Amoroso;Mirco Vacca;Maria De Angelis;Roberto Bellotti;Sabina Tangaro
2024-01-01

Abstract

Autism spectrum disorder (ASD) affects social interaction and communication. Emerging evidence links ASD to gut microbiome alterations, suggesting that microbial composition may play a role in the disorder. This study employs explainable artificial intelligence (XAI) to examine the contributions of individual microbial species to ASD. By using local explanation embeddings and unsupervised clustering, the research identifies distinct ASD subgroups, underscoring the disorder's heterogeneity. Specific microbial biomarkers associated with ASD are revealed, and the best classifiers achieved an AU-ROC of 0.965 ± 0.005 and a AU-PRC of 0.967±0.008. The findings support the notion that gut microbiome composition varies significantly among individuals with ASD. This work's broader significance lies in its potential to inform personalized interventions, enhancing precision in ASD management and classification. These insights highlight the importance of individualized microbiome profiles for developing tailored therapeutic strategies for ASD.
File in questo prodotto:
File Dimensione Formato  
A2024_Novielli_et_al_2024_Personalized identification of autism-related bacteria in the gut microbiome using explainable artificial intelligence.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.44 MB
Formato Adobe PDF
4.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/502420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact