Diffuse intrinsic pontine glioma (DIPG), now referred to as diffuse midline glioma (DMG), is a highly aggressive pediatric cancer primarily affecting children aged 4 to 9 years old. Despite the research and clinical trials conducted to identify a possible treatment for DIPG, no effective drug is currently available. These tumors often affect deep midline brain structures in young children, suggesting a connection to early brain development’s epigenetic regulation targets, possibly affecting neural progenitor functions and differentiation. The H3K27M mutation is a known DIPG trigger, but the exact mechanisms beyond epigenetic regulation remain unclear. After thoroughly examining the available literature, we found that over 85% of DIPG tumors contain a somatic missense mutation, K27M, in genes encoding histone H3.3 and H3.1, leading to abnormal gene expression that drives tumor growth and spread. This mutation impacts crucial brain development processes, including the epithelial–mesenchymal transition (EMT) pathway, and may explain differences between H3K27M and non-K27M pediatric gliomas. Effects on stem cells show increased proliferation and disrupted differentiation. The genomic organization of H3 gene family members in the developing brain has revealed variations in their expression patterns. All these observations suggest a need for global efforts to understand developmental origins and potential treatments.
Pediatric Diffuse Midline Glioma H3K27-Altered: From Developmental Origins to Therapeutic Challenges
Manuela Mandorino;Ahana Maitra;Domenico Armenise;Olga Maria Baldelli;Morena Miciaccia;Savina Ferorelli;Maria Grazia Perrone;Antonio Scilimati
2024-01-01
Abstract
Diffuse intrinsic pontine glioma (DIPG), now referred to as diffuse midline glioma (DMG), is a highly aggressive pediatric cancer primarily affecting children aged 4 to 9 years old. Despite the research and clinical trials conducted to identify a possible treatment for DIPG, no effective drug is currently available. These tumors often affect deep midline brain structures in young children, suggesting a connection to early brain development’s epigenetic regulation targets, possibly affecting neural progenitor functions and differentiation. The H3K27M mutation is a known DIPG trigger, but the exact mechanisms beyond epigenetic regulation remain unclear. After thoroughly examining the available literature, we found that over 85% of DIPG tumors contain a somatic missense mutation, K27M, in genes encoding histone H3.3 and H3.1, leading to abnormal gene expression that drives tumor growth and spread. This mutation impacts crucial brain development processes, including the epithelial–mesenchymal transition (EMT) pathway, and may explain differences between H3K27M and non-K27M pediatric gliomas. Effects on stem cells show increased proliferation and disrupted differentiation. The genomic organization of H3 gene family members in the developing brain has revealed variations in their expression patterns. All these observations suggest a need for global efforts to understand developmental origins and potential treatments.File | Dimensione | Formato | |
---|---|---|---|
cancers-16-01814 (1).pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Non specificato
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.