Perovskite solar cells with a planar p-i-n device structure offer easy processability at low temperatures, suitable for roll-to-roll fabrication on flexible substrates. Herein we investigate different hole transport layers (solution processed NiOx, sputtered NiOx, PEDOT:PSS) in planar p-i-n perovskite solar cells using the triple cation lead halide perovskite Cs0.08(MA0.17FA0.83)0.92Pb(I0.83Br0.17)3 as absorber layer. Overall, reproducible solar cell performances with power conversion efficiencies up to 12.8% were obtained using solution processed NiOx as hole transport layer in the devices. Compared to that, devices with PEDOT:PSS as hole transport layer yield efficiencies of approx. 8.4%. Further improvement of the fill factor was achieved by the use of an additional zinc oxide nanoparticle layer between the PC60BM film and the Ag electrode.
Investigation of NiOx-hole transport layers in triple cation perovskite solar cells
Coclite A. M.;
2018-01-01
Abstract
Perovskite solar cells with a planar p-i-n device structure offer easy processability at low temperatures, suitable for roll-to-roll fabrication on flexible substrates. Herein we investigate different hole transport layers (solution processed NiOx, sputtered NiOx, PEDOT:PSS) in planar p-i-n perovskite solar cells using the triple cation lead halide perovskite Cs0.08(MA0.17FA0.83)0.92Pb(I0.83Br0.17)3 as absorber layer. Overall, reproducible solar cell performances with power conversion efficiencies up to 12.8% were obtained using solution processed NiOx as hole transport layer in the devices. Compared to that, devices with PEDOT:PSS as hole transport layer yield efficiencies of approx. 8.4%. Further improvement of the fill factor was achieved by the use of an additional zinc oxide nanoparticle layer between the PC60BM film and the Ag electrode.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.